跳转到内容

会话

会话为 Agents SDK 提供了一个持久化内存层。将任何实现了 Session 接口的对象传给 Runner.run,其余交给 SDK 处理。当会话存在时,运行器会自动:

  1. 获取此前存储的对话项,并在下一轮次前置这些内容。
  2. 在每次运行完成后持久化新的用户输入与助手输出。
  3. 保持会话可用于后续轮次,无论是用新的用户文本调用运行器,还是从中断的 RunState 恢复。

这消除了手动调用 toInputList() 或在轮次之间拼接历史的需求。TypeScript SDK 自带两种实现:用于 Conversations API 的 OpenAIConversationsSession,以及用于本地开发的 MemorySession。由于它们共享 Session 接口,您可以插入自定义存储后端。若想获得除 Conversations API 之外的灵感,可探索 examples/memory/ 下的示例会话后端(Prisma、文件后端等)。当使用 OpenAI Responses 模型时,用 OpenAIResponsesCompactionSession 包裹任意会话以通过 responses.compact 自动缩短已存储的对话记录。

提示:要运行本页中的 OpenAIConversationsSession 示例,请设置 OPENAI_API_KEY 环境变量(或在构造会话时提供 apiKey),以便 SDK 能调用 Conversations API。


使用 OpenAIConversationsSession 将内存与 Conversations API 同步,或替换为任意其他 Session 实现。

使用 Conversations API 作为会话内存
import { Agent, OpenAIConversationsSession, run } from '@openai/agents';
const agent = new Agent({
name: 'TourGuide',
instructions: 'Answer with compact travel facts.',
});
// Any object that implements the Session interface works here. This example uses
// the built-in OpenAIConversationsSession, but you can swap in a custom Session.
const session = new OpenAIConversationsSession();
const firstTurn = await run(agent, 'What city is the Golden Gate Bridge in?', {
session,
});
console.log(firstTurn.finalOutput); // "San Francisco"
const secondTurn = await run(agent, 'What state is it in?', { session });
console.log(secondTurn.finalOutput); // "California"

复用同一个会话实例可确保在每一轮之前,智能体都能收到完整的对话历史,并自动持久化新条目。切换到不同的 Session 实现无需改动其他代码。

OpenAIConversationsSession 构造函数选项:

选项类型说明
conversationIdstring复用已有会话,而不是按需创建。
clientOpenAI传入已预配置的 OpenAI 客户端。
apiKeystring在内部创建 OpenAI 客户端时使用的 API key。
baseURLstringOpenAI 兼容端点的基础 URL。
organizationstring请求所用的 OpenAI 组织 ID。
projectstring请求所用的 OpenAI 项目 ID。

  • 在每次运行之前,它会检索会话历史,与新一轮输入合并,并将合并后的列表传给智能体。
  • 在非流式运行之后,通过一次 session.addItems() 调用即可持久化最新一轮中的原始用户输入和模型输出。
  • 对于流式传输运行,它会先写入用户输入,并在该轮完成后追加流式输出。
  • 当从 RunResult.state 恢复(审批或其他中断)时,继续传入同一个 session。恢复的轮次会被加入内存,无需重新准备输入。

会话提供简单的 CRUD 帮助器,便于构建“撤销”“清空聊天”或审计等功能。

读取与编辑存储的条目
import { OpenAIConversationsSession } from '@openai/agents';
import type { AgentInputItem } from '@openai/agents-core';
// Replace OpenAIConversationsSession with any other Session implementation that
// supports get/add/pop/clear if you store history elsewhere.
const session = new OpenAIConversationsSession({
conversationId: 'conv_123', // Resume an existing conversation if you have one.
});
const history = await session.getItems();
console.log(`Loaded ${history.length} prior items.`);
const followUp: AgentInputItem[] = [
{
type: 'message',
role: 'user',
content: [{ type: 'input_text', text: 'Let’s continue later.' }],
},
];
await session.addItems(followUp);
const undone = await session.popItem();
if (undone?.type === 'message') {
console.log(undone.role); // "user"
}
await session.clearSession();

session.getItems() 会返回已存储的 AgentInputItem[]。调用 popItem() 可移除最后一个条目——在重新运行智能体前用于用户更正很有用。


实现 Session 接口,以 Redis、DynamoDB、SQLite 或其他数据存储来支撑内存。只需要五个异步方法。

自定义内存会话实现
import { Agent, run } from '@openai/agents';
import { randomUUID } from '@openai/agents-core/_shims';
import { getLogger } from '@openai/agents-core';
import type { AgentInputItem, Session } from '@openai/agents-core';
/**
* Minimal example of a Session implementation; swap this class for any storage-backed version.
*/
export class CustomMemorySession implements Session {
private readonly sessionId: string;
private readonly logger: ReturnType<typeof getLogger>;
private items: AgentInputItem[];
constructor(
options: {
sessionId?: string;
initialItems?: AgentInputItem[];
logger?: ReturnType<typeof getLogger>;
} = {},
) {
this.sessionId = options.sessionId ?? randomUUID();
this.items = options.initialItems
? options.initialItems.map(cloneAgentItem)
: [];
this.logger = options.logger ?? getLogger('openai-agents:memory-session');
}
async getSessionId(): Promise<string> {
return this.sessionId;
}
async getItems(limit?: number): Promise<AgentInputItem[]> {
if (limit === undefined) {
const cloned = this.items.map(cloneAgentItem);
this.logger.debug(
`Getting items from memory session (${this.sessionId}): ${JSON.stringify(cloned)}`,
);
return cloned;
}
if (limit <= 0) {
return [];
}
const start = Math.max(this.items.length - limit, 0);
const items = this.items.slice(start).map(cloneAgentItem);
this.logger.debug(
`Getting items from memory session (${this.sessionId}): ${JSON.stringify(items)}`,
);
return items;
}
async addItems(items: AgentInputItem[]): Promise<void> {
if (items.length === 0) {
return;
}
const cloned = items.map(cloneAgentItem);
this.logger.debug(
`Adding items to memory session (${this.sessionId}): ${JSON.stringify(cloned)}`,
);
this.items = [...this.items, ...cloned];
}
async popItem(): Promise<AgentInputItem | undefined> {
if (this.items.length === 0) {
return undefined;
}
const item = this.items[this.items.length - 1];
const cloned = cloneAgentItem(item);
this.logger.debug(
`Popping item from memory session (${this.sessionId}): ${JSON.stringify(cloned)}`,
);
this.items = this.items.slice(0, -1);
return cloned;
}
async clearSession(): Promise<void> {
this.logger.debug(`Clearing memory session (${this.sessionId})`);
this.items = [];
}
}
function cloneAgentItem<T extends AgentInputItem>(item: T): T {
return structuredClone(item);
}
const agent = new Agent({
name: 'MemoryDemo',
instructions: 'Remember the running total.',
});
// Using the above custom memory session implementation here
const session = new CustomMemorySession({
sessionId: 'session-123-4567',
});
const first = await run(agent, 'Add 3 to the total.', { session });
console.log(first.finalOutput);
const second = await run(agent, 'Add 4 more.', { session });
console.log(second.finalOutput);

自定义会话可用于实施保留策略、添加加密,或在持久化前为每次对话轮次附加元数据。


当您将 AgentInputItem 数组作为运行输入时,提供一个 sessionInputCallback,以确定性地将其与存储的历史合并。运行器会加载现有历史,在模型调用之前调用您的回调,并将返回的数组作为该轮的完整输入传给模型。此钩子非常适合裁剪旧条目、对工具结果去重,或仅突出您希望模型看到的上下文。

使用 sessionInputCallback 截断历史
import { Agent, OpenAIConversationsSession, run } from '@openai/agents';
import type { AgentInputItem } from '@openai/agents-core';
const agent = new Agent({
name: 'Planner',
instructions: 'Track outstanding tasks before responding.',
});
// Any Session implementation can be passed here; customize storage as needed.
const session = new OpenAIConversationsSession();
const todoUpdate: AgentInputItem[] = [
{
type: 'message',
role: 'user',
content: [
{ type: 'input_text', text: 'Add booking a hotel to my todo list.' },
],
},
];
await run(agent, todoUpdate, {
session,
// function that combines session history with new input items before the model call
sessionInputCallback: (history, newItems) => {
const recentHistory = history.slice(-8);
return [...recentHistory, ...newItems];
},
});

对于字符串输入,运行器会自动合并历史,因此该回调是可选的。


Human-in-the-loop 流程通常会暂停运行以等待审批:

const result = await runner.run(agent, 'Search the itinerary', {
session,
stream: true,
});
if (result.requiresApproval) {
// ... collect user feedback, then resume the agent in a later turn
const continuation = await runner.run(agent, result.state, { session });
console.log(continuation.finalOutput);
}

当您从先前的 RunState 恢复时,新一轮会追加到同一条内存记录中,从而保留单一的对话历史。人工干预(HITL)流程完全兼容——审批检查点仍通过 RunState 往返,而会话保持完整的对话记录。


OpenAIResponsesCompactionSession 会装饰任意 Session,并依赖 OpenAI Responses API 来保持对话记录简短。在每次持久化轮次后,运行器会将最新的 responseId 传入 runCompaction,当您的决策钩子返回 true 时,它会调用 responses.compact。默认触发条件是在累计至少 10 个非用户条目后压缩;通过重写 shouldTriggerCompaction,您可以基于 token 数或自定义启发式来决策。该装饰器会清空并用压缩后的输出重写底层会话,因此请避免将其与 OpenAIConversationsSession 搭配使用,后者使用不同的服务器管理历史流程。

用 OpenAIResponsesCompactionSession 装饰会话
import {
Agent,
MemorySession,
OpenAIResponsesCompactionSession,
run,
} from '@openai/agents';
const agent = new Agent({
name: 'Support',
instructions: 'Answer briefly and keep track of prior context.',
model: 'gpt-5.2',
});
// Wrap any Session to trigger responses.compact once history grows beyond your threshold.
const session = new OpenAIResponsesCompactionSession({
// You can pass any Session implementation except OpenAIConversationsSession
underlyingSession: new MemorySession(),
// (optional) The model used for calling responses.compact API
model: 'gpt-5.2',
// (optional) your custom logic here
shouldTriggerCompaction: ({ compactionCandidateItems }) => {
return compactionCandidateItems.length >= 12;
},
});
await run(agent, 'Summarize order #8472 in one sentence.', { session });
await run(agent, 'Remind me of the shipping address.', { session });
// Compaction runs automatically after each persisted turn. You can also force it manually.
await session.runCompaction({ force: true });

OpenAIResponsesCompactionSession 构造函数选项:

选项类型说明
clientOpenAI用于 responses.compact 的 OpenAI 客户端。
underlyingSessionSession用于清空/重写为压缩条目的底层会话存储(不能为 OpenAIConversationsSession)。
modelOpenAI.ResponsesModel用于压缩请求的模型。
compactionMode'auto' | 'previous_response_id' | 'input'控制压缩使用服务器响应链式模式还是本地输入条目。
shouldTriggerCompaction(context) => boolean | Promise<boolean>基于 responseIdcompactionMode、候选条目与当前会话条目的自定义触发钩子。

runCompaction(args) 选项:

选项类型说明
responseIdstring用于 previous_response_id 模式的最新 Responses API 响应 ID。
compactionMode'auto' | 'previous_response_id' | 'input'可选:按调用覆盖已配置的模式。
storeboolean指示上一次运行是否存储了服务器状态。
forceboolean跳过 shouldTriggerCompaction,立即执行压缩。

面向低延迟流式传输的手动压缩

Section titled “面向低延迟流式传输的手动压缩”

压缩会清空并重写底层会话,因此 SDK 会在完成压缩后才解析流式运行。如果压缩较重,则在最后一个输出 token 后,result.completed 可能会再等待几秒。对于低延迟流式传输或更快的轮次交替,禁用自动压缩,并在轮次之间(或空闲时)自行调用 runCompaction

禁用自动压缩并在轮次之间压缩
import {
Agent,
MemorySession,
OpenAIResponsesCompactionSession,
run,
} from '@openai/agents';
const agent = new Agent({
name: 'Support',
instructions: 'Answer briefly and keep track of prior context.',
model: 'gpt-5.2',
});
// Disable auto-compaction to avoid delaying stream completion.
const session = new OpenAIResponsesCompactionSession({
underlyingSession: new MemorySession(),
shouldTriggerCompaction: () => false,
});
const result = await run(agent, 'Share the latest ticket update.', {
session,
stream: true,
});
// Wait for the streaming run to finish before compacting.
await result.completed;
// Choose force based on your own thresholds or heuristics, between turns or during idle time.
await session.runCompaction({ force: true });

您可以随时调用 runCompaction({ force: true }) 在归档或交接前缩短历史。使用 DEBUG=openai-agents:openai:compaction 启用调试日志以追踪压缩决策。