Models
Every Agent ultimately calls an LLM. The SDK abstracts models behind two lightweight interfaces:
Model– knows how to make one request against a specific API.ModelProvider– resolves human‑readable model names (e.g.'gpt‑5.2') toModelinstances.
In day‑to‑day work you normally only interact with model names and occasionally ModelSettings.
import { Agent } from '@openai/agents';
const agent = new Agent({ name: 'Creative writer', model: 'gpt-5.2',});Default model
Section titled “Default model”When you don’t specify a model when initializing an Agent, the default model will be used. The default is currently gpt-4.1 for compatibility and low latency. If you have access, we recommend setting your agents to gpt-5.2 for higher quality while keeping explicit modelSettings.
If you want to switch to other models like gpt-5.2, there are two ways to configure your agents.
First, if you want to consistently use a specific model for all agents that do not set a custom model, set the OPENAI_DEFAULT_MODEL environment variable before running your agents.
export OPENAI_DEFAULT_MODEL=gpt-5.2node my-awesome-agent.jsSecond, you can set a default model for a Runner instance. If you don’t set a model for an agent, this Runner’s default model will be used.
import { Runner } from '@openai/agents';
const runner = new Runner({ model: 'gpt‑4.1-mini' });GPT-5.x models
Section titled “GPT-5.x models”When you use any GPT-5.x model such as gpt-5.2 in this way, the SDK applies default modelSettings. It sets the ones that work the best for most use cases. To adjust the reasoning effort for the default model, pass your own modelSettings:
import { Agent } from '@openai/agents';
const myAgent = new Agent({ name: 'My Agent', instructions: "You're a helpful agent.", // If OPENAI_DEFAULT_MODEL=gpt-5.2 is set, passing only modelSettings works. // It's also fine to pass a GPT-5.x model name explicitly: model: 'gpt-5.2', modelSettings: { reasoning: { effort: 'high' }, text: { verbosity: 'low' }, },});For lower latency, using reasoning.effort: "none" with gpt-5.2 is recommended. The gpt-4.1 family (including mini and nano variants) also remains a solid choice for building interactive agent apps.
Non-GPT-5 models
Section titled “Non-GPT-5 models”If you pass a non–GPT-5 model name without custom modelSettings, the SDK reverts to generic modelSettings compatible with any model.
The OpenAI provider
Section titled “The OpenAI provider”The default ModelProvider resolves names using the OpenAI APIs. It supports two distinct
endpoints:
| API | Usage | Call setOpenAIAPI() |
|---|---|---|
| Chat Completions | Standard chat & function calls | setOpenAIAPI('chat_completions') |
| Responses | New streaming‑first generative API (tool calls, flexible outputs) | setOpenAIAPI('responses') (default) |
Authentication
Section titled “Authentication”import { setDefaultOpenAIKey } from '@openai/agents';
setDefaultOpenAIKey(process.env.OPENAI_API_KEY!); // sk-...You can also plug your own OpenAI client via setDefaultOpenAIClient(client) if you need
custom networking settings.
ModelSettings
Section titled “ModelSettings”ModelSettings mirrors the OpenAI parameters but is provider‑agnostic.
| Field | Type | Notes |
|---|---|---|
temperature | number | Creativity vs. determinism. |
topP | number | Nucleus sampling. |
frequencyPenalty | number | Penalise repeated tokens. |
presencePenalty | number | Encourage new tokens. |
toolChoice | 'auto' | 'required' | 'none' | string | See forcing tool use. |
parallelToolCalls | boolean | Allow parallel function calls where supported. |
truncation | 'auto' | 'disabled' | Token truncation strategy. |
maxTokens | number | Maximum tokens in the response. |
store | boolean | Persist the response for retrieval / RAG workflows. |
reasoning.effort | 'none' | 'minimal' | 'low' | 'medium' | 'high' | 'xhigh' | Reasoning effort for gpt-5.x models. |
text.verbosity | 'low' | 'medium' | 'high' | Text verbosity for gpt-5.x etc. |
Attach settings at either level:
import { Runner, Agent } from '@openai/agents';
const agent = new Agent({ name: 'Creative writer', // ... modelSettings: { temperature: 0.7, toolChoice: 'auto' },});
// or globallynew Runner({ modelSettings: { temperature: 0.3 } });Runner‑level settings override any conflicting per‑agent settings.
Prompt
Section titled “Prompt”Agents can be configured with a prompt parameter, indicating a server-stored
prompt configuration that should be used to control the Agent’s behavior. Currently,
this option is only supported when you use the OpenAI
Responses API.
| Field | Type | Notes |
|---|---|---|
promptId | string | Unique identifier for a prompt. |
version | string | Version of the prompt you wish to use. |
variables | object | A key/value pair of variables to substitute into the prompt. Values can be strings or content input types like text, images, or files. |
import { parseArgs } from 'node:util';import { Agent, run } from '@openai/agents';
/*NOTE: This example will not work out of the box, because the default prompt ID will notbe available in your project.
To use it, please:1. Go to https://platform.openai.com/playground/prompts2. Create a new prompt variable, `poem_style`.3. Create a system prompt with the content: Write a poem in {{poem_style}}4. Run the example with the `--prompt-id` flag.*/
const DEFAULT_PROMPT_ID = 'pmpt_6965a984c7ac8194a8f4e79b00f838840118c1e58beb3332';const POEM_STYLES = ['limerick', 'haiku', 'ballad'];
function pickPoemStyle(): string { return POEM_STYLES[Math.floor(Math.random() * POEM_STYLES.length)];}
async function runDynamic(promptId: string) { const poemStyle = pickPoemStyle(); console.log(`[debug] Dynamic poem_style: ${poemStyle}`);
const agent = new Agent({ name: 'Assistant', prompt: { promptId, version: '1', variables: { poem_style: poemStyle }, }, });
const result = await run(agent, 'Tell me about recursion in programming.'); console.log(result.finalOutput);}
async function runStatic(promptId: string) { const agent = new Agent({ name: 'Assistant', prompt: { promptId, version: '1', variables: { poem_style: 'limerick' }, }, });
const result = await run(agent, 'Tell me about recursion in programming.'); console.log(result.finalOutput);}
async function main() { const args = parseArgs({ options: { dynamic: { type: 'boolean', default: false }, 'prompt-id': { type: 'string', default: DEFAULT_PROMPT_ID }, }, });
const promptId = args.values['prompt-id']; if (!promptId) { console.error('Please provide a prompt ID via --prompt-id.'); process.exit(1); }
if (args.values.dynamic) { await runDynamic(promptId); } else { await runStatic(promptId); }}
main().catch((error) => { console.error(error); process.exit(1);});Any additional agent configuration, like tools or instructions, will override the values you may have configured in your stored prompt.
Custom model providers
Section titled “Custom model providers”Implementing your own provider is straightforward – implement ModelProvider and Model and
pass the provider to the Runner constructor:
import { ModelProvider, Model, ModelRequest, ModelResponse, ResponseStreamEvent,} from '@openai/agents-core';
import { Agent, Runner } from '@openai/agents';
class EchoModel implements Model { name: string; constructor() { this.name = 'Echo'; } async getResponse(request: ModelRequest): Promise<ModelResponse> { return { usage: {}, output: [{ role: 'assistant', content: request.input as string }], } as any; } async *getStreamedResponse( _request: ModelRequest, ): AsyncIterable<ResponseStreamEvent> { yield { type: 'response.completed', response: { output: [], usage: {} }, } as any; }}
class EchoProvider implements ModelProvider { getModel(_modelName?: string): Promise<Model> | Model { return new EchoModel(); }}
const runner = new Runner({ modelProvider: new EchoProvider() });console.log(runner.config.modelProvider.getModel());const agent = new Agent({ name: 'Test Agent', instructions: 'You are a helpful assistant.', model: new EchoModel(), modelSettings: { temperature: 0.7, toolChoice: 'auto' },});console.log(agent.model);If you want a ready-made adapter for non-OpenAI models, see Using any model with Vercel’s AI SDK.
Tracing exporter
Section titled “Tracing exporter”When using the OpenAI provider you can opt‑in to automatic trace export by providing your API key:
import { setTracingExportApiKey } from '@openai/agents';
setTracingExportApiKey('sk-...');This sends traces to the OpenAI dashboard where you can inspect the complete execution graph of your workflow.
Next steps
Section titled “Next steps”- Explore running agents.
- Give your models super‑powers with tools.
- Add guardrails or tracing as needed.