快速开始
先决条件
请确保你已经按照 Agents SDK 的基础快速开始说明完成设置,并创建了一个虚拟环境。然后,从 SDK 安装可选的语音依赖:
概念
需要了解的主要概念是一个VoicePipeline
,它是一个包含 3 个步骤的流程:
- 运行语音转文本模型,将音频转换为文本。
- 运行你的代码(通常是一个智能体工作流)以生成结果。
- 运行文本转语音模型,将结果文本转换回音频。
graph LR
%% Input
A["🎤 Audio Input"]
%% Voice Pipeline
subgraph Voice_Pipeline [Voice Pipeline]
direction TB
B["Transcribe (speech-to-text)"]
C["Your Code"]:::highlight
D["Text-to-speech"]
B --> C --> D
end
%% Output
E["🎧 Audio Output"]
%% Flow
A --> Voice_Pipeline
Voice_Pipeline --> E
%% Custom styling
classDef highlight fill:#ffcc66,stroke:#333,stroke-width:1px,font-weight:700;
智能体
首先,我们来设置一些智能体。如果你已经用这个 SDK 构建过任何智能体,这应该会让你感到熟悉。我们将创建几个智能体、一个任务转移,以及一个工具。
import asyncio
import random
from agents import (
Agent,
function_tool,
)
from agents.extensions.handoff_prompt import prompt_with_handoff_instructions
@function_tool
def get_weather(city: str) -> str:
"""Get the weather for a given city."""
print(f"[debug] get_weather called with city: {city}")
choices = ["sunny", "cloudy", "rainy", "snowy"]
return f"The weather in {city} is {random.choice(choices)}."
spanish_agent = Agent(
name="Spanish",
handoff_description="A spanish speaking agent.",
instructions=prompt_with_handoff_instructions(
"You're speaking to a human, so be polite and concise. Speak in Spanish.",
),
model="gpt-4.1",
)
agent = Agent(
name="Assistant",
instructions=prompt_with_handoff_instructions(
"You're speaking to a human, so be polite and concise. If the user speaks in Spanish, handoff to the spanish agent.",
),
model="gpt-4.1",
handoffs=[spanish_agent],
tools=[get_weather],
)
语音管线
我们将设置一个简单的语音管线,使用SingleAgentVoiceWorkflow
作为工作流。
from agents.voice import SingleAgentVoiceWorkflow, VoicePipeline
pipeline = VoicePipeline(workflow=SingleAgentVoiceWorkflow(agent))
运行管线
import numpy as np
import sounddevice as sd
from agents.voice import AudioInput
# For simplicity, we'll just create 3 seconds of silence
# In reality, you'd get microphone data
buffer = np.zeros(24000 * 3, dtype=np.int16)
audio_input = AudioInput(buffer=buffer)
result = await pipeline.run(audio_input)
# Create an audio player using `sounddevice`
player = sd.OutputStream(samplerate=24000, channels=1, dtype=np.int16)
player.start()
# Play the audio stream as it comes in
async for event in result.stream():
if event.type == "voice_stream_event_audio":
player.write(event.data)
整合
import asyncio
import random
import numpy as np
import sounddevice as sd
from agents import (
Agent,
function_tool,
set_tracing_disabled,
)
from agents.voice import (
AudioInput,
SingleAgentVoiceWorkflow,
VoicePipeline,
)
from agents.extensions.handoff_prompt import prompt_with_handoff_instructions
@function_tool
def get_weather(city: str) -> str:
"""Get the weather for a given city."""
print(f"[debug] get_weather called with city: {city}")
choices = ["sunny", "cloudy", "rainy", "snowy"]
return f"The weather in {city} is {random.choice(choices)}."
spanish_agent = Agent(
name="Spanish",
handoff_description="A spanish speaking agent.",
instructions=prompt_with_handoff_instructions(
"You're speaking to a human, so be polite and concise. Speak in Spanish.",
),
model="gpt-4.1",
)
agent = Agent(
name="Assistant",
instructions=prompt_with_handoff_instructions(
"You're speaking to a human, so be polite and concise. If the user speaks in Spanish, handoff to the spanish agent.",
),
model="gpt-4.1",
handoffs=[spanish_agent],
tools=[get_weather],
)
async def main():
pipeline = VoicePipeline(workflow=SingleAgentVoiceWorkflow(agent))
buffer = np.zeros(24000 * 3, dtype=np.int16)
audio_input = AudioInput(buffer=buffer)
result = await pipeline.run(audio_input)
# Create an audio player using `sounddevice`
player = sd.OutputStream(samplerate=24000, channels=1, dtype=np.int16)
player.start()
# Play the audio stream as it comes in
async for event in result.stream():
if event.type == "voice_stream_event_audio":
player.write(event.data)
if __name__ == "__main__":
asyncio.run(main())
如果你运行这个示例,智能体会和你对话!查看examples/voice/static中的示例,了解一个你可以亲自与智能体对话的演示。