会话
Agents SDK 提供内置的会话内存,可在多个智能体运行之间自动维护对话历史,无需在回合之间手动处理 .to_input_list()。
会话为特定会话存储对话历史,使智能体无需显式的手动内存管理即可保持上下文。这对于构建聊天应用或多轮对话尤为有用,你可以让智能体记住之前的交互。
快速开始
from agents import Agent, Runner, SQLiteSession
# Create agent
agent = Agent(
name="Assistant",
instructions="Reply very concisely.",
)
# Create a session instance with a session ID
session = SQLiteSession("conversation_123")
# First turn
result = await Runner.run(
agent,
"What city is the Golden Gate Bridge in?",
session=session
)
print(result.final_output) # "San Francisco"
# Second turn - agent automatically remembers previous context
result = await Runner.run(
agent,
"What state is it in?",
session=session
)
print(result.final_output) # "California"
# Also works with synchronous runner
result = Runner.run_sync(
agent,
"What's the population?",
session=session
)
print(result.final_output) # "Approximately 39 million"
工作原理
当启用会话内存时:
- 每次运行前:运行器会自动检索该会话的对话历史,并将其预置到输入项之前。
- 每次运行后:在运行期间生成的所有新条目(用户输入、助手响应、工具调用等)都会自动存储到会话中。
- 上下文保留:使用相同会话的后续运行将包含完整对话历史,使智能体能够保持上下文。
这消除了在运行之间手动调用 .to_input_list() 并管理对话状态的需要。
内存操作
基础操作
会话支持多种用于管理对话历史的操作:
from agents import SQLiteSession
session = SQLiteSession("user_123", "conversations.db")
# Get all items in a session
items = await session.get_items()
# Add new items to a session
new_items = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"}
]
await session.add_items(new_items)
# Remove and return the most recent item
last_item = await session.pop_item()
print(last_item) # {"role": "assistant", "content": "Hi there!"}
# Clear all items from a session
await session.clear_session()
使用 pop_item 进行更正
当你想要撤销或修改对话中的最后一个条目时,pop_item 方法特别有用:
from agents import Agent, Runner, SQLiteSession
agent = Agent(name="Assistant")
session = SQLiteSession("correction_example")
# Initial conversation
result = await Runner.run(
agent,
"What's 2 + 2?",
session=session
)
print(f"Agent: {result.final_output}")
# User wants to correct their question
assistant_item = await session.pop_item() # Remove agent's response
user_item = await session.pop_item() # Remove user's question
# Ask a corrected question
result = await Runner.run(
agent,
"What's 2 + 3?",
session=session
)
print(f"Agent: {result.final_output}")
内存选项
无内存(默认)
OpenAI Conversations API 内存
使用 OpenAI Conversations API 来持久化 conversation state,无需管理你自己的数据库。当你已经依赖由 OpenAI 托管的基础设施来存储对话历史时,这将很有帮助。
from agents import OpenAIConversationsSession
session = OpenAIConversationsSession()
# Optionally resume a previous conversation by passing a conversation ID
# session = OpenAIConversationsSession(conversation_id="conv_123")
result = await Runner.run(
agent,
"Hello",
session=session,
)
SQLite 内存
from agents import SQLiteSession
# In-memory database (lost when process ends)
session = SQLiteSession("user_123")
# Persistent file-based database
session = SQLiteSession("user_123", "conversations.db")
# Use the session
result = await Runner.run(
agent,
"Hello",
session=session
)
多会话
from agents import Agent, Runner, SQLiteSession
agent = Agent(name="Assistant")
# Different sessions maintain separate conversation histories
session_1 = SQLiteSession("user_123", "conversations.db")
session_2 = SQLiteSession("user_456", "conversations.db")
result1 = await Runner.run(
agent,
"Hello",
session=session_1
)
result2 = await Runner.run(
agent,
"Hello",
session=session_2
)
由 SQLAlchemy 驱动的会话
对于更高级的用例,你可以使用由 SQLAlchemy 驱动的会话后端。这样就可以使用任何 SQLAlchemy 支持的数据库(PostgreSQL、MySQL、SQLite 等)来进行会话存储。
示例 1:使用 from_url 搭配内存型 SQLite
这是最简单的入门方式,适合开发和测试。
import asyncio
from agents import Agent, Runner
from agents.extensions.memory.sqlalchemy_session import SQLAlchemySession
async def main():
agent = Agent("Assistant")
session = SQLAlchemySession.from_url(
"user-123",
url="sqlite+aiosqlite:///:memory:",
create_tables=True, # Auto-create tables for the demo
)
result = await Runner.run(agent, "Hello", session=session)
if __name__ == "__main__":
asyncio.run(main())
示例 2:使用现有的 SQLAlchemy 引擎
在生产应用中,你很可能已经拥有一个 SQLAlchemy 的 AsyncEngine 实例。你可以将其直接传递给会话。
import asyncio
from agents import Agent, Runner
from agents.extensions.memory.sqlalchemy_session import SQLAlchemySession
from sqlalchemy.ext.asyncio import create_async_engine
async def main():
# In your application, you would use your existing engine
engine = create_async_engine("sqlite+aiosqlite:///conversations.db")
agent = Agent("Assistant")
session = SQLAlchemySession(
"user-456",
engine=engine,
create_tables=True, # Auto-create tables for the demo
)
result = await Runner.run(agent, "Hello", session=session)
print(result.final_output)
await engine.dispose()
if __name__ == "__main__":
asyncio.run(main())
加密会话
对于需要对静态对话数据进行加密的应用,你可以使用 EncryptedSession 来包装任意会话后端,实现透明加密和基于 TTL 的自动过期。这需要 encrypt 可选依赖:pip install openai-agents[encrypt]。
EncryptedSession 使用基于每个会话的密钥派生(HKDF)的 Fernet 加密,并支持旧消息的自动过期。当条目超过 TTL 时,它们在检索期间会被静默跳过。
示例:为 SQLAlchemy 会话数据加密
import asyncio
from agents import Agent, Runner
from agents.extensions.memory import EncryptedSession, SQLAlchemySession
async def main():
# Create underlying session (works with any SessionABC implementation)
underlying_session = SQLAlchemySession.from_url(
session_id="user-123",
url="postgresql+asyncpg://app:secret@db.example.com/agents",
create_tables=True,
)
# Wrap with encryption and TTL-based expiration
session = EncryptedSession(
session_id="user-123",
underlying_session=underlying_session,
encryption_key="your-encryption-key", # Use a secure key from your secrets management
ttl=600, # 10 minutes - items older than this are silently skipped
)
agent = Agent("Assistant")
result = await Runner.run(agent, "Hello", session=session)
print(result.final_output)
if __name__ == "__main__":
asyncio.run(main())
关键特性:
- 透明加密:在存储前自动加密所有会话条目,并在检索时解密
- 按会话派生密钥:使用会话 ID 作为盐的 HKDF 来派生唯一加密密钥
- 基于 TTL 的过期:根据可配置的生存时间(默认:10 分钟)自动使旧消息过期
- 灵活的密钥输入:接受 Fernet 密钥或原始字符串作为加密密钥
- 可包装任意会话:适用于 SQLite、SQLAlchemy 或自定义会话实现
重要的安全注意事项
- 安全存储你的加密密钥(如环境变量、密钥管理服务)
- 过期令牌根据应用服务的系统时钟被拒绝——请确保所有服务均通过 NTP 同步时间,以避免因时钟漂移导致的误拒
- 底层会话仍存储加密数据,因此你依然可以掌控你的数据库基础设施
自定义内存实现
你可以通过创建遵循 Session 协议的类来实现你自己的会话内存:
from agents.memory.session import SessionABC
from agents.items import TResponseInputItem
from typing import List
class MyCustomSession(SessionABC):
"""Custom session implementation following the Session protocol."""
def __init__(self, session_id: str):
self.session_id = session_id
# Your initialization here
async def get_items(self, limit: int | None = None) -> List[TResponseInputItem]:
"""Retrieve conversation history for this session."""
# Your implementation here
pass
async def add_items(self, items: List[TResponseInputItem]) -> None:
"""Store new items for this session."""
# Your implementation here
pass
async def pop_item(self) -> TResponseInputItem | None:
"""Remove and return the most recent item from this session."""
# Your implementation here
pass
async def clear_session(self) -> None:
"""Clear all items for this session."""
# Your implementation here
pass
# Use your custom session
agent = Agent(name="Assistant")
result = await Runner.run(
agent,
"Hello",
session=MyCustomSession("my_session")
)
会话管理
会话 ID 命名
使用有意义的会话 ID 来帮助组织对话:
- 基于用户:
"user_12345" - 基于线程:
"thread_abc123" - 基于上下文:
"support_ticket_456"
内存持久化
- 临时会话使用内存型 SQLite(
SQLiteSession("session_id")) - 持久化会话使用基于文件的 SQLite(
SQLiteSession("session_id", "path/to/db.sqlite")) - 生产系统且已有数据库时,使用由 SQLAlchemy 驱动的会话(
SQLAlchemySession("session_id", engine=engine, create_tables=True)),支持 SQLAlchemy 支持的数据库 - 当你希望将历史存储在 OpenAI Conversations API 中时,使用 OpenAI 托管的存储(
OpenAIConversationsSession()) - 使用加密会话(
EncryptedSession(session_id, underlying_session, encryption_key))为任意会话提供透明加密与基于 TTL 的过期 - 针对其他生产系统(Redis、Django 等)考虑实现自定义会话后端,以满足更高级的用例
会话管理
# Clear a session when conversation should start fresh
await session.clear_session()
# Different agents can share the same session
support_agent = Agent(name="Support")
billing_agent = Agent(name="Billing")
session = SQLiteSession("user_123")
# Both agents will see the same conversation history
result1 = await Runner.run(
support_agent,
"Help me with my account",
session=session
)
result2 = await Runner.run(
billing_agent,
"What are my charges?",
session=session
)
完整示例
以下是展示会话内存实际效果的完整示例:
import asyncio
from agents import Agent, Runner, SQLiteSession
async def main():
# Create an agent
agent = Agent(
name="Assistant",
instructions="Reply very concisely.",
)
# Create a session instance that will persist across runs
session = SQLiteSession("conversation_123", "conversation_history.db")
print("=== Sessions Example ===")
print("The agent will remember previous messages automatically.\n")
# First turn
print("First turn:")
print("User: What city is the Golden Gate Bridge in?")
result = await Runner.run(
agent,
"What city is the Golden Gate Bridge in?",
session=session
)
print(f"Assistant: {result.final_output}")
print()
# Second turn - the agent will remember the previous conversation
print("Second turn:")
print("User: What state is it in?")
result = await Runner.run(
agent,
"What state is it in?",
session=session
)
print(f"Assistant: {result.final_output}")
print()
# Third turn - continuing the conversation
print("Third turn:")
print("User: What's the population of that state?")
result = await Runner.run(
agent,
"What's the population of that state?",
session=session
)
print(f"Assistant: {result.final_output}")
print()
print("=== Conversation Complete ===")
print("Notice how the agent remembered the context from previous turns!")
print("Sessions automatically handles conversation history.")
if __name__ == "__main__":
asyncio.run(main())
API 参考
详细的 API 文档请参阅:
Session- 协议接口SQLiteSession- SQLite 实现OpenAIConversationsSession- OpenAI Conversations API 实现SQLAlchemySession- 由 SQLAlchemy 驱动的实现EncryptedSession- 具有 TTL 的加密会话封装器