Built-in call_model_input_filter that trims large tool outputs from older turns.
Agentic applications often accumulate large tool outputs (search results, code execution
output, error analyses) that consume significant tokens but lose relevance as the
conversation progresses. This module provides a configurable filter that surgically trims
bulky tool outputs from older turns while keeping recent turns at full fidelity.
Usage::
from agents import RunConfig
from agents.extensions import ToolOutputTrimmer
config = RunConfig(
call_model_input_filter=ToolOutputTrimmer(
recent_turns=2,
max_output_chars=500,
preview_chars=200,
trimmable_tools={"search", "execute_code"},
),
)
The trimmer operates as a sliding window: the last recent_turns user messages (and
all items after them) are never modified. Older tool outputs that exceed
max_output_chars — and optionally belong to trimmable_tools — are replaced with a
compact preview.
Configurable filter that trims large tool outputs from older conversation turns.
This class implements the CallModelInputFilter protocol and can be passed directly
to RunConfig.call_model_input_filter. It runs immediately before each model call
and replaces large tool outputs from older turns with a concise preview, reducing token
usage without losing the context of what happened.
Parameters:
| Name |
Type |
Description |
Default |
recent_turns
|
int
|
Number of recent user messages whose surrounding items are never
trimmed. Defaults to 2.
|
2
|
max_output_chars
|
int
|
Tool outputs above this character count are candidates for
trimming. Defaults to 500.
|
500
|
preview_chars
|
int
|
How many characters of the original output to preserve as a
preview when trimming. Defaults to 200.
|
200
|
trimmable_tools
|
frozenset[str] | None
|
Optional set of tool names whose outputs can be trimmed. If
None, all tool outputs are eligible for trimming. Defaults to None.
|
None
|
Source code in src/agents/extensions/tool_output_trimmer.py
| @dataclass
class ToolOutputTrimmer:
"""Configurable filter that trims large tool outputs from older conversation turns.
This class implements the ``CallModelInputFilter`` protocol and can be passed directly
to ``RunConfig.call_model_input_filter``. It runs immediately before each model call
and replaces large tool outputs from older turns with a concise preview, reducing token
usage without losing the context of what happened.
Args:
recent_turns: Number of recent user messages whose surrounding items are never
trimmed. Defaults to 2.
max_output_chars: Tool outputs above this character count are candidates for
trimming. Defaults to 500.
preview_chars: How many characters of the original output to preserve as a
preview when trimming. Defaults to 200.
trimmable_tools: Optional set of tool names whose outputs can be trimmed. If
``None``, all tool outputs are eligible for trimming. Defaults to ``None``.
"""
recent_turns: int = 2
max_output_chars: int = 500
preview_chars: int = 200
trimmable_tools: frozenset[str] | None = field(default=None)
def __post_init__(self) -> None:
if self.recent_turns < 1:
raise ValueError(f"recent_turns must be >= 1, got {self.recent_turns}")
if self.max_output_chars < 1:
raise ValueError(f"max_output_chars must be >= 1, got {self.max_output_chars}")
if self.preview_chars < 0:
raise ValueError(f"preview_chars must be >= 0, got {self.preview_chars}")
# Coerce any iterable to frozenset for immutability
if self.trimmable_tools is not None and not isinstance(self.trimmable_tools, frozenset):
object.__setattr__(self, "trimmable_tools", frozenset(self.trimmable_tools))
def __call__(self, data: CallModelData[Any]) -> ModelInputData:
"""Filter callback invoked before each model call.
Finds the boundary between old and recent items, then trims large tool outputs
from old turns. Does NOT mutate the original items — creates shallow copies when
needed.
"""
from ..run_config import ModelInputData as _ModelInputData
model_data = data.model_data
items = model_data.input
if not items:
return model_data
boundary = self._find_recent_boundary(items)
if boundary == 0:
return model_data
call_id_to_name = self._build_call_id_to_name(items)
trimmed_count = 0
chars_saved = 0
new_items: list[Any] = []
for i, item in enumerate(items):
if (
i < boundary
and isinstance(item, dict)
and item.get("type") == "function_call_output"
):
output = item.get("output", "")
output_str = output if isinstance(output, str) else str(output)
output_len = len(output_str)
call_id = str(item.get("call_id", ""))
tool_name = call_id_to_name.get(call_id, "")
if output_len > self.max_output_chars and (
self.trimmable_tools is None or tool_name in self.trimmable_tools
):
display_name = tool_name or "unknown_tool"
preview = output_str[: self.preview_chars]
summary = (
f"[Trimmed: {display_name} output — {output_len} chars → "
f"{self.preview_chars} char preview]\n{preview}..."
)
# Only replace if summary is actually shorter than the original
if len(summary) < output_len:
trimmed_item = dict(item)
trimmed_item["output"] = summary
new_items.append(trimmed_item)
trimmed_count += 1
chars_saved += output_len - len(summary)
continue
new_items.append(item)
if trimmed_count > 0:
logger.debug(
f"ToolOutputTrimmer: trimmed {trimmed_count} tool output(s), "
f"saved ~{chars_saved} chars"
)
return _ModelInputData(input=new_items, instructions=model_data.instructions)
def _find_recent_boundary(self, items: list[Any]) -> int:
"""Find the index separating 'old' items from 'recent' items.
Walks backward through the items list counting user messages. Returns the index
of the Nth user message from the end, where N = ``recent_turns``. Items at or
after this index are considered recent and will not be trimmed.
If there are fewer than N user messages, returns 0 (nothing is old).
"""
user_msg_count = 0
for i in range(len(items) - 1, -1, -1):
item = items[i]
if isinstance(item, dict) and item.get("role") == "user":
user_msg_count += 1
if user_msg_count >= self.recent_turns:
return i
return 0
def _build_call_id_to_name(self, items: list[Any]) -> dict[str, str]:
"""Build a mapping from function call_id to tool name."""
mapping: dict[str, str] = {}
for item in items:
if isinstance(item, dict) and item.get("type") == "function_call":
call_id = item.get("call_id")
name = item.get("name")
if call_id and name:
mapping[call_id] = name
return mapping
|
Filter callback invoked before each model call.
Finds the boundary between old and recent items, then trims large tool outputs
from old turns. Does NOT mutate the original items — creates shallow copies when
needed.
Source code in src/agents/extensions/tool_output_trimmer.py
| def __call__(self, data: CallModelData[Any]) -> ModelInputData:
"""Filter callback invoked before each model call.
Finds the boundary between old and recent items, then trims large tool outputs
from old turns. Does NOT mutate the original items — creates shallow copies when
needed.
"""
from ..run_config import ModelInputData as _ModelInputData
model_data = data.model_data
items = model_data.input
if not items:
return model_data
boundary = self._find_recent_boundary(items)
if boundary == 0:
return model_data
call_id_to_name = self._build_call_id_to_name(items)
trimmed_count = 0
chars_saved = 0
new_items: list[Any] = []
for i, item in enumerate(items):
if (
i < boundary
and isinstance(item, dict)
and item.get("type") == "function_call_output"
):
output = item.get("output", "")
output_str = output if isinstance(output, str) else str(output)
output_len = len(output_str)
call_id = str(item.get("call_id", ""))
tool_name = call_id_to_name.get(call_id, "")
if output_len > self.max_output_chars and (
self.trimmable_tools is None or tool_name in self.trimmable_tools
):
display_name = tool_name or "unknown_tool"
preview = output_str[: self.preview_chars]
summary = (
f"[Trimmed: {display_name} output — {output_len} chars → "
f"{self.preview_chars} char preview]\n{preview}..."
)
# Only replace if summary is actually shorter than the original
if len(summary) < output_len:
trimmed_item = dict(item)
trimmed_item["output"] = summary
new_items.append(trimmed_item)
trimmed_count += 1
chars_saved += output_len - len(summary)
continue
new_items.append(item)
if trimmed_count > 0:
logger.debug(
f"ToolOutputTrimmer: trimmed {trimmed_count} tool output(s), "
f"saved ~{chars_saved} chars"
)
return _ModelInputData(input=new_items, instructions=model_data.instructions)
|