コンテンツにスキップ

エージェント

エージェントはアプリの中核となる構成要素です。エージェントは instructions とツールで構成された大規模言語モデル( LLM )です。

基本設定

エージェントでよく設定するプロパティは次のとおりです。

  • name: エージェントを識別する必須の文字列。
  • instructions: developer message または system prompt とも呼ばれます。
  • model: 使用する LLM と、temperature、top_p などのモデル調整パラメーターを設定する任意の model_settings
  • tools: エージェントがタスク達成に使用できるツール。
from agents import Agent, ModelSettings, function_tool

@function_tool
def get_weather(city: str) -> str:
    """returns weather info for the specified city."""
    return f"The weather in {city} is sunny"

agent = Agent(
    name="Haiku agent",
    instructions="Always respond in haiku form",
    model="gpt-5-nano",
    tools=[get_weather],
)

コンテキスト

エージェントはその context 型に対してジェネリックです。コンテキストは依存性注入のためのツールで、あなたが作成して Runner.run() に渡すオブジェクトです。これはすべてのエージェント、ツール、ハンドオフなどに渡され、エージェント実行のための依存関係や状態をまとめて保持します。コンテキストには任意の Python オブジェクトを提供できます。

@dataclass
class UserContext:
    name: str
    uid: str
    is_pro_user: bool

    async def fetch_purchases() -> list[Purchase]:
        return ...

agent = Agent[UserContext](
    ...,
)

出力タイプ

既定では、エージェントはプレーンテキスト(つまり str)出力を生成します。特定の型の出力を生成させたい場合は、output_type パラメーターを使用できます。一般的には Pydantic オブジェクトを使いますが、Pydantic の TypeAdapter でラップできる任意の型(dataclasses、lists、TypedDict など)をサポートします。

from pydantic import BaseModel
from agents import Agent


class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]

agent = Agent(
    name="Calendar extractor",
    instructions="Extract calendar events from text",
    output_type=CalendarEvent,
)

Note

output_type を渡すと、モデルは通常のプレーンテキスト応答ではなく structured outputs を使用するよう指示されます。

マルチエージェントシステムの設計パターン

マルチ エージェント システムの設計方法は多数ありますが、一般的に広く適用できるパターンを 2 つ紹介します。

  1. マネージャー(エージェントをツールとして): 中央のマネージャー/オーケストレーターが、ツールとして公開された特化サブ エージェントを呼び出し、会話の制御を保持します。
  2. ハンドオフ: ピア エージェントが制御を特化エージェントに引き渡し、そのエージェントが会話を引き継ぎます。これは分散型です。

詳細はエージェント構築の実践ガイドをご覧ください。

マネージャー(エージェントをツールとして)

customer_facing_agent はすべてのユーザーとのやりとりを担当し、ツールとして公開された特化サブ エージェントを呼び出します。詳しくはツールのドキュメントをご覧ください。

from agents import Agent

booking_agent = Agent(...)
refund_agent = Agent(...)

customer_facing_agent = Agent(
    name="Customer-facing agent",
    instructions=(
        "Handle all direct user communication. "
        "Call the relevant tools when specialized expertise is needed."
    ),
    tools=[
        booking_agent.as_tool(
            tool_name="booking_expert",
            tool_description="Handles booking questions and requests.",
        ),
        refund_agent.as_tool(
            tool_name="refund_expert",
            tool_description="Handles refund questions and requests.",
        )
    ],
)

ハンドオフ

ハンドオフは、エージェントが委譲できるサブ エージェントです。ハンドオフが発生すると、委譲先のエージェントは会話履歴を受け取り、会話を引き継ぎます。このパターンにより、単一のタスクに秀でたモジュール型の特化エージェントが実現できます。詳しくはハンドオフのドキュメントをご覧ください。

from agents import Agent

booking_agent = Agent(...)
refund_agent = Agent(...)

triage_agent = Agent(
    name="Triage agent",
    instructions=(
        "Help the user with their questions. "
        "If they ask about booking, hand off to the booking agent. "
        "If they ask about refunds, hand off to the refund agent."
    ),
    handoffs=[booking_agent, refund_agent],
)

動的 instructions

多くの場合、エージェントの作成時に instructions を指定できますが、関数経由で動的に instructions を提供することも可能です。関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と async 関数の両方を受け付けます。

def dynamic_instructions(
    context: RunContextWrapper[UserContext], agent: Agent[UserContext]
) -> str:
    return f"The user's name is {context.context.name}. Help them with their questions."


agent = Agent[UserContext](
    name="Triage agent",
    instructions=dynamic_instructions,
)

ライフサイクルイベント(フック)

エージェントのライフサイクルを観測したい場合があります。例えば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりする場合です。hooks プロパティでエージェントのライフサイクルにフックできます。AgentHooks クラスを継承し、関心のあるメソッドをオーバーライドしてください。

ガードレール

ガードレールにより、エージェントの実行と並行してユーザー入力のチェック/検証を行い、生成後のエージェント出力に対してもチェックを行えます。例えば、ユーザー入力やエージェント出力の関連性をスクリーニングできます。詳しくはガードレールのドキュメントをご覧ください。

エージェントのクローン/コピー

エージェントの clone() メソッドを使用すると、エージェントを複製し、必要に応じて任意のプロパティを変更できます。

pirate_agent = Agent(
    name="Pirate",
    instructions="Write like a pirate",
    model="gpt-4.1",
)

robot_agent = pirate_agent.clone(
    name="Robot",
    instructions="Write like a robot",
)

ツール使用の強制

ツールのリストを指定しても、必ずしも LLM がツールを使用するとは限りません。ModelSettings.tool_choice を設定することでツール使用を強制できます。有効な値は次のとおりです。

  1. auto: ツールを使用するかどうかを LLM が判断します。
  2. required: LLM にツールの使用を要求します(ただし、どのツールを使うかは賢く判断します)。
  3. none: LLM にツールを使用しないことを要求します。
  4. 特定の文字列(例: my_tool)を設定: LLM にその特定のツールを使用するよう要求します。
from agents import Agent, Runner, function_tool, ModelSettings

@function_tool
def get_weather(city: str) -> str:
    """Returns weather info for the specified city."""
    return f"The weather in {city} is sunny"

agent = Agent(
    name="Weather Agent",
    instructions="Retrieve weather details.",
    tools=[get_weather],
    model_settings=ModelSettings(tool_choice="get_weather")
)

ツール使用の動作

Agent の設定にある tool_use_behavior パラメーターは、ツール出力の扱い方を制御します。

  • "run_llm_again": 既定。ツールを実行し、その結果を LLM が処理して最終応答を生成します。
  • "stop_on_first_tool": 最初のツール呼び出しの出力を最終応答として使用し、追加の LLM 処理は行いません。
from agents import Agent, Runner, function_tool, ModelSettings

@function_tool
def get_weather(city: str) -> str:
    """Returns weather info for the specified city."""
    return f"The weather in {city} is sunny"

agent = Agent(
    name="Weather Agent",
    instructions="Retrieve weather details.",
    tools=[get_weather],
    tool_use_behavior="stop_on_first_tool"
)
  • StopAtTools(stop_at_tool_names=[...]): 指定したいずれかのツールが呼び出された時点で停止し、その出力を最終応答として使用します。
from agents import Agent, Runner, function_tool
from agents.agent import StopAtTools

@function_tool
def get_weather(city: str) -> str:
    """Returns weather info for the specified city."""
    return f"The weather in {city} is sunny"

@function_tool
def sum_numbers(a: int, b: int) -> int:
    """Adds two numbers."""
    return a + b

agent = Agent(
    name="Stop At Stock Agent",
    instructions="Get weather or sum numbers.",
    tools=[get_weather, sum_numbers],
    tool_use_behavior=StopAtTools(stop_at_tool_names=["get_weather"])
)
  • ToolsToFinalOutputFunction: ツール結果を処理し、停止するか LLM を続行するかを判断するカスタム関数です。
from agents import Agent, Runner, function_tool, FunctionToolResult, RunContextWrapper
from agents.agent import ToolsToFinalOutputResult
from typing import List, Any

@function_tool
def get_weather(city: str) -> str:
    """Returns weather info for the specified city."""
    return f"The weather in {city} is sunny"

def custom_tool_handler(
    context: RunContextWrapper[Any],
    tool_results: List[FunctionToolResult]
) -> ToolsToFinalOutputResult:
    """Processes tool results to decide final output."""
    for result in tool_results:
        if result.output and "sunny" in result.output:
            return ToolsToFinalOutputResult(
                is_final_output=True,
                final_output=f"Final weather: {result.output}"
            )
    return ToolsToFinalOutputResult(
        is_final_output=False,
        final_output=None
    )

agent = Agent(
    name="Weather Agent",
    instructions="Retrieve weather details.",
    tools=[get_weather],
    tool_use_behavior=custom_tool_handler
)

Note

無限ループを防ぐため、フレームワークはツール呼び出し後に tool_choice を自動的に "auto" にリセットします。この動作は agent.reset_tool_choice で設定できます。無限ループは、ツール結果が LLM に送られ、tool_choice により LLM が再度ツール呼び出しを生成し続けることで発生します。