Skip to content

Guardrail Evals

Guardrail evaluation runner and CLI.

This script provides a command-line interface and class for running guardrail evaluations on datasets.

GuardrailEval

Class for running guardrail evaluations.

Source code in src/guardrails/evals/guardrail_evals.py
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
class GuardrailEval:
    """Class for running guardrail evaluations."""

    def __init__(
        self,
        config_path: Path,
        dataset_path: Path,
        stages: Sequence[str] | None = None,
        batch_size: int = DEFAULT_BATCH_SIZE,
        output_dir: Path = Path("results"),
        api_key: str | None = None,
        base_url: str | None = None,
        azure_endpoint: str | None = None,
        azure_api_version: str | None = None,
        mode: str = "evaluate",
        models: Sequence[str] | None = None,
        latency_iterations: int = DEFAULT_LATENCY_ITERATIONS,
    ) -> None:
        """Initialize the evaluator.

        Args:
            config_path: Path to pipeline configuration file.
            dataset_path: Path to evaluation dataset (JSONL).
            stages: Specific stages to evaluate (pre_flight, input, output).
            batch_size: Number of samples to process in parallel.
            output_dir: Directory to save evaluation results.
            api_key: API key for OpenAI, Azure OpenAI, or OpenAI-compatible API.
            base_url: Base URL for OpenAI-compatible API (e.g., http://localhost:11434/v1).
            azure_endpoint: Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com).
            azure_api_version: Azure OpenAI API version (e.g., 2025-01-01-preview).
            mode: Evaluation mode ("evaluate" or "benchmark").
            models: Models to test in benchmark mode.
            latency_iterations: Number of iterations for latency testing.
        """
        self._validate_inputs(config_path, dataset_path, batch_size, mode, latency_iterations)

        self.config_path = config_path
        self.dataset_path = dataset_path
        self.stages = stages
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.api_key = api_key
        self.base_url = base_url
        self.azure_endpoint = azure_endpoint
        self.azure_api_version = azure_api_version or "2025-01-01-preview"
        self.mode = mode
        self.models = models or DEFAULT_BENCHMARK_MODELS
        self.latency_iterations = latency_iterations

        # Validate Azure configuration
        if azure_endpoint and not AsyncAzureOpenAI:
            raise ValueError(
                "Azure OpenAI support requires openai>=1.0.0. "
                "Please upgrade: pip install --upgrade openai"
            )

    def _validate_inputs(
        self,
        config_path: Path,
        dataset_path: Path,
        batch_size: int,
        mode: str,
        latency_iterations: int
    ) -> None:
        """Validate input parameters."""
        if not config_path.exists():
            raise ValueError(f"Config file not found: {config_path}")

        if not dataset_path.exists():
            raise ValueError(f"Dataset file not found: {dataset_path}")

        if batch_size <= 0:
            raise ValueError(f"Batch size must be positive, got: {batch_size}")

        if mode not in ("evaluate", "benchmark"):
            raise ValueError(f"Invalid mode: {mode}. Must be 'evaluate' or 'benchmark'")

        if latency_iterations <= 0:
            raise ValueError(f"Latency iterations must be positive, got: {latency_iterations}")

    async def run(self) -> None:
        """Run the evaluation pipeline for all specified stages."""
        try:
            if self.mode == "benchmark":
                await self._run_benchmark()
            else:
                await self._run_evaluation()
        except Exception as e:
            logger.error("Evaluation failed: %s", e)
            raise

    async def _run_evaluation(self) -> None:
        """Run standard evaluation mode."""
        pipeline_bundles = load_pipeline_bundles(self.config_path)
        stages_to_evaluate = self._get_valid_stages(pipeline_bundles)

        if not stages_to_evaluate:
            raise ValueError("No valid stages found in configuration")

        logger.info("Evaluating stages: %s", ", ".join(stages_to_evaluate))

        loader = JsonlDatasetLoader()
        samples = loader.load(self.dataset_path)
        logger.info("Loaded %d samples from dataset", len(samples))

        context = self._create_context()
        calculator = GuardrailMetricsCalculator()
        reporter = JsonResultsReporter()

        all_results = {}
        all_metrics = {}

        for stage in stages_to_evaluate:
            logger.info("Starting %s stage evaluation", stage)

            try:
                stage_results = await self._evaluate_single_stage(
                    stage, pipeline_bundles, samples, context, calculator
                )

                if stage_results:
                    all_results[stage] = stage_results["results"]
                    all_metrics[stage] = stage_results["metrics"]
                    logger.info("Completed %s stage evaluation", stage)
                else:
                    logger.warning("Stage '%s' evaluation returned no results", stage)

            except Exception as e:
                logger.error("Failed to evaluate stage '%s': %s", stage, e)

        if not all_results:
            raise ValueError("No stages were successfully evaluated")

        reporter.save_multi_stage(all_results, all_metrics, self.output_dir)
        logger.info("Evaluation completed. Results saved to: %s", self.output_dir)

    async def _run_benchmark(self) -> None:
        """Run benchmark mode comparing multiple models."""
        logger.info("Running benchmark mode with models: %s", ", ".join(self.models))

        pipeline_bundles = load_pipeline_bundles(self.config_path)
        stage_to_test, guardrail_name = self._get_benchmark_target(pipeline_bundles)

        # Validate guardrail has model configuration
        stage_bundle = getattr(pipeline_bundles, stage_to_test)
        if not self._has_model_configuration(stage_bundle):
            raise ValueError(f"Guardrail '{guardrail_name}' does not have a model configuration. "
                           "Benchmark mode requires LLM-based guardrails with configurable models.")

        logger.info("Benchmarking guardrail '%s' from stage '%s'", guardrail_name, stage_to_test)

        loader = JsonlDatasetLoader()
        samples = loader.load(self.dataset_path)
        logger.info("Loaded %d samples for benchmarking", len(samples))

        context = self._create_context()
        benchmark_calculator = BenchmarkMetricsCalculator()
        basic_calculator = GuardrailMetricsCalculator()
        benchmark_reporter = BenchmarkReporter(self.output_dir)

        # Run benchmark for all models
        results_by_model, metrics_by_model = await self._benchmark_all_models(
            stage_to_test, guardrail_name, samples, context, benchmark_calculator, basic_calculator
        )

        # Run latency testing
        logger.info("Running latency tests for all models")
        latency_results = await self._run_latency_tests(stage_to_test, samples)

        # Save benchmark results
        benchmark_dir = benchmark_reporter.save_benchmark_results(
            results_by_model,
            metrics_by_model,
            latency_results,
            guardrail_name,
            len(samples),
            self.latency_iterations
        )

        # Create visualizations
        logger.info("Generating visualizations")
        visualizer = BenchmarkVisualizer(benchmark_dir / "graphs")
        visualization_files = visualizer.create_all_visualizations(
            results_by_model,
            metrics_by_model,
            latency_results,
            guardrail_name,
            samples[0].expected_triggers if samples else {}
        )

        logger.info("Benchmark completed. Results saved to: %s", benchmark_dir)
        logger.info("Generated %d visualizations", len(visualization_files))

    def _has_model_configuration(self, stage_bundle) -> bool:
        """Check if the guardrail has a model configuration."""
        if not stage_bundle.guardrails:
            return False

        guardrail_config = stage_bundle.guardrails[0].config
        if not guardrail_config:
            return False

        if isinstance(guardrail_config, dict) and 'model' in guardrail_config:
            return True
        elif hasattr(guardrail_config, 'model'):
            return True

        return False

    async def _run_latency_tests(self, stage_to_test: str, samples: list) -> dict[str, Any]:
        """Run latency tests for all models."""
        latency_results = {}
        latency_tester = LatencyTester(iterations=self.latency_iterations)

        for model in self.models:
            model_stage_bundle = self._create_model_specific_stage_bundle(
                getattr(load_pipeline_bundles(self.config_path), stage_to_test), model
            )
            model_context = self._create_context()
            latency_results[model] = await latency_tester.test_guardrail_latency_for_model(
                model_context,
                model_stage_bundle,
                samples,
                self.latency_iterations,
                desc=f"Testing latency: {model}",
            )

        return latency_results

    def _create_context(self) -> Context:
        """Create evaluation context with OpenAI client.

        Supports OpenAI, Azure OpenAI, and OpenAI-compatible APIs.
        Used for both evaluation and benchmark modes.

        Returns:
            Context with configured AsyncOpenAI or AsyncAzureOpenAI client.
        """
        # Azure OpenAI
        if self.azure_endpoint:
            if not AsyncAzureOpenAI:
                raise ValueError(
                    "Azure OpenAI support requires openai>=1.0.0. "
                    "Please upgrade: pip install --upgrade openai"
                )

            azure_kwargs = {
                "azure_endpoint": self.azure_endpoint,
                "api_version": self.azure_api_version,
            }
            if self.api_key:
                azure_kwargs["api_key"] = self.api_key

            guardrail_llm = AsyncAzureOpenAI(**azure_kwargs)
            logger.info("Created Azure OpenAI client for endpoint: %s", self.azure_endpoint)
        # OpenAI or OpenAI-compatible API
        else:
            openai_kwargs = {}
            if self.api_key:
                openai_kwargs["api_key"] = self.api_key
            if self.base_url:
                openai_kwargs["base_url"] = self.base_url
                logger.info("Created OpenAI-compatible client for base_url: %s", self.base_url)

            guardrail_llm = AsyncOpenAI(**openai_kwargs)

        return Context(guardrail_llm=guardrail_llm)


    def _is_valid_stage(self, pipeline_bundles, stage: str) -> bool:
        """Check if a stage has valid guardrails configured.

        Args:
            pipeline_bundles: Pipeline bundles object.
            stage: Stage name to check.

        Returns:
            True if stage exists and has guardrails configured.
        """
        if not hasattr(pipeline_bundles, stage):
            return False

        stage_bundle = getattr(pipeline_bundles, stage)
        return (
            stage_bundle is not None
            and hasattr(stage_bundle, 'guardrails')
            and bool(stage_bundle.guardrails)
        )

    def _create_model_specific_stage_bundle(self, stage_bundle, model: str):
        """Create a deep copy of the stage bundle with model-specific configuration."""
        try:
            modified_bundle = copy.deepcopy(stage_bundle)
        except Exception as e:
            logger.error("Failed to create deep copy of stage bundle: %s", e)
            raise ValueError(f"Failed to create deep copy of stage bundle: {e}") from e

        logger.info("Creating model-specific configuration for model: %s", model)

        guardrails_updated = 0
        for guardrail in modified_bundle.guardrails:
            try:
                if hasattr(guardrail, 'config') and guardrail.config:
                    if isinstance(guardrail.config, dict) and 'model' in guardrail.config:
                        original_model = guardrail.config['model']
                        guardrail.config['model'] = model
                        logger.info("Updated guardrail '%s' model from '%s' to '%s'",
                                  guardrail.name, original_model, model)
                        guardrails_updated += 1
                    elif hasattr(guardrail.config, 'model'):
                        original_model = getattr(guardrail.config, 'model', 'unknown')
                        guardrail.config.model = model
                        logger.info("Updated guardrail '%s' model from '%s' to '%s'",
                                  guardrail.name, original_model, model)
                        guardrails_updated += 1
            except Exception as e:
                logger.error("Failed to update guardrail '%s' configuration: %s", guardrail.name, e)
                raise ValueError(f"Failed to update guardrail '{guardrail.name}' configuration: {e}") from e

        if guardrails_updated == 0:
            logger.warning("No guardrails with model configuration were found")
        else:
            logger.info("Successfully updated %d guardrail(s) for model: %s", guardrails_updated, model)

        return modified_bundle

    def _get_valid_stages(self, pipeline_bundles) -> list[str]:
        """Get list of valid stages to evaluate."""
        if self.stages is None:
            # Auto-detect all valid stages
            available_stages = [
                stage for stage in VALID_STAGES
                if self._is_valid_stage(pipeline_bundles, stage)
            ]

            if not available_stages:
                raise ValueError("No valid stages found in configuration")

            logger.info("No stages specified, evaluating all available stages: %s", ", ".join(available_stages))
            return available_stages
        else:
            # Validate requested stages
            valid_requested_stages = []
            for stage in self.stages:
                if stage not in VALID_STAGES:
                    logger.warning("Invalid stage '%s', skipping", stage)
                    continue

                if not self._is_valid_stage(pipeline_bundles, stage):
                    logger.warning("Stage '%s' not found or has no guardrails configured, skipping", stage)
                    continue

                valid_requested_stages.append(stage)

            if not valid_requested_stages:
                raise ValueError("No valid stages found in configuration")

            return valid_requested_stages

    async def _evaluate_single_stage(
        self,
        stage: str,
        pipeline_bundles,
        samples: list,
        context: Context,
        calculator: GuardrailMetricsCalculator
    ) -> dict[str, Any] | None:
        """Evaluate a single pipeline stage."""
        try:
            stage_bundle = getattr(pipeline_bundles, stage)
            guardrails = instantiate_guardrails(stage_bundle)

            engine = AsyncRunEngine(guardrails)

            stage_results = await engine.run(
                context,
                samples,
                self.batch_size,
                desc=f"Evaluating {stage} stage"
            )

            stage_metrics = calculator.calculate(stage_results)

            return {
                "results": stage_results,
                "metrics": stage_metrics
            }

        except Exception as e:
            logger.error("Failed to evaluate stage '%s': %s", stage, e)
            return None

    def _get_benchmark_target(self, pipeline_bundles) -> tuple[str, str]:
        """Get the stage and guardrail to benchmark."""
        if self.stages:
            stage_to_test = self.stages[0]
            if not self._is_valid_stage(pipeline_bundles, stage_to_test):
                raise ValueError(f"Stage '{stage_to_test}' has no guardrails configured")
        else:
            # Find first valid stage
            stage_to_test = next(
                (stage for stage in VALID_STAGES if self._is_valid_stage(pipeline_bundles, stage)),
                None
            )
            if not stage_to_test:
                raise ValueError("No valid stage found for benchmarking")

        stage_bundle = getattr(pipeline_bundles, stage_to_test)
        guardrail_name = stage_bundle.guardrails[0].name

        return stage_to_test, guardrail_name

    async def _benchmark_all_models(
        self,
        stage_to_test: str,
        guardrail_name: str,
        samples: list,
        context: Context,
        benchmark_calculator: BenchmarkMetricsCalculator,
        basic_calculator: GuardrailMetricsCalculator
    ) -> tuple[dict[str, list], dict[str, dict]]:
        """Benchmark all models for the specified stage and guardrail."""
        pipeline_bundles = load_pipeline_bundles(self.config_path)
        stage_bundle = getattr(pipeline_bundles, stage_to_test)

        results_by_model = {}
        metrics_by_model = {}

        for i, model in enumerate(self.models, 1):
            logger.info("Testing model %d/%d: %s", i, len(self.models), model)

            try:
                modified_stage_bundle = self._create_model_specific_stage_bundle(stage_bundle, model)

                model_results = await self._benchmark_single_model(
                    model, modified_stage_bundle, samples, context,
                    guardrail_name, benchmark_calculator, basic_calculator
                )

                if model_results:
                    results_by_model[model] = model_results["results"]
                    metrics_by_model[model] = model_results["metrics"]
                    logger.info("Completed benchmarking for model %s (%d/%d)", model, i, len(self.models))
                else:
                    logger.warning("Model %s benchmark returned no results (%d/%d)", model, i, len(self.models))
                    results_by_model[model] = []
                    metrics_by_model[model] = {}

            except Exception as e:
                logger.error("Failed to benchmark model %s (%d/%d): %s", model, i, len(self.models), e)
                results_by_model[model] = []
                metrics_by_model[model] = {}

        # Log summary
        successful_models = [model for model, results in results_by_model.items() if results]
        failed_models = [model for model, results in results_by_model.items() if not results]

        logger.info("BENCHMARK SUMMARY")
        logger.info("Successful models: %s", ", ".join(successful_models) if successful_models else "None")
        if failed_models:
            logger.warning("Failed models: %s", ", ".join(failed_models))
        logger.info("Total models tested: %d", len(self.models))

        return results_by_model, metrics_by_model

    async def _benchmark_single_model(
        self,
        model: str,
        stage_bundle,
        samples: list,
        context: Context,
        guardrail_name: str,
        benchmark_calculator: BenchmarkMetricsCalculator,
        basic_calculator: GuardrailMetricsCalculator
    ) -> dict[str, Any] | None:
        """Benchmark a single model."""
        try:
            model_context = self._create_context()

            guardrails = instantiate_guardrails(stage_bundle)
            engine = AsyncRunEngine(guardrails)
            model_results = await engine.run(
                model_context,
                samples,
                self.batch_size,
                desc=f"Benchmarking {model}"
            )

            guardrail_config = stage_bundle.guardrails[0].config if stage_bundle.guardrails else None

            advanced_metrics = benchmark_calculator.calculate_advanced_metrics(
                model_results, guardrail_name, guardrail_config
            )

            basic_metrics = basic_calculator.calculate(model_results)

            if guardrail_name in basic_metrics:
                guardrail_metrics = basic_metrics[guardrail_name]
                basic_metrics_dict = {
                    "precision": guardrail_metrics.precision,
                    "recall": guardrail_metrics.recall,
                    "f1_score": guardrail_metrics.f1_score,
                    "true_positives": guardrail_metrics.true_positives,
                    "false_positives": guardrail_metrics.false_positives,
                    "false_negatives": guardrail_metrics.false_negatives,
                    "true_negatives": guardrail_metrics.true_negatives,
                    "total_samples": guardrail_metrics.total_samples,
                }
            else:
                basic_metrics_dict = {}

            combined_metrics = {**basic_metrics_dict, **advanced_metrics}

            return {
                "results": model_results,
                "metrics": combined_metrics
            }

        except Exception as e:
            logger.error("Failed to benchmark model %s: %s", model, e)
            return None

__init__

__init__(
    config_path: Path,
    dataset_path: Path,
    stages: Sequence[str] | None = None,
    batch_size: int = DEFAULT_BATCH_SIZE,
    output_dir: Path = Path("results"),
    api_key: str | None = None,
    base_url: str | None = None,
    azure_endpoint: str | None = None,
    azure_api_version: str | None = None,
    mode: str = "evaluate",
    models: Sequence[str] | None = None,
    latency_iterations: int = DEFAULT_LATENCY_ITERATIONS,
) -> None

Initialize the evaluator.

Parameters:

Name Type Description Default
config_path Path

Path to pipeline configuration file.

required
dataset_path Path

Path to evaluation dataset (JSONL).

required
stages Sequence[str] | None

Specific stages to evaluate (pre_flight, input, output).

None
batch_size int

Number of samples to process in parallel.

DEFAULT_BATCH_SIZE
output_dir Path

Directory to save evaluation results.

Path('results')
api_key str | None

API key for OpenAI, Azure OpenAI, or OpenAI-compatible API.

None
base_url str | None

Base URL for OpenAI-compatible API (e.g., http://localhost:11434/v1).

None
azure_endpoint str | None

Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com).

None
azure_api_version str | None

Azure OpenAI API version (e.g., 2025-01-01-preview).

None
mode str

Evaluation mode ("evaluate" or "benchmark").

'evaluate'
models Sequence[str] | None

Models to test in benchmark mode.

None
latency_iterations int

Number of iterations for latency testing.

DEFAULT_LATENCY_ITERATIONS
Source code in src/guardrails/evals/guardrail_evals.py
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def __init__(
    self,
    config_path: Path,
    dataset_path: Path,
    stages: Sequence[str] | None = None,
    batch_size: int = DEFAULT_BATCH_SIZE,
    output_dir: Path = Path("results"),
    api_key: str | None = None,
    base_url: str | None = None,
    azure_endpoint: str | None = None,
    azure_api_version: str | None = None,
    mode: str = "evaluate",
    models: Sequence[str] | None = None,
    latency_iterations: int = DEFAULT_LATENCY_ITERATIONS,
) -> None:
    """Initialize the evaluator.

    Args:
        config_path: Path to pipeline configuration file.
        dataset_path: Path to evaluation dataset (JSONL).
        stages: Specific stages to evaluate (pre_flight, input, output).
        batch_size: Number of samples to process in parallel.
        output_dir: Directory to save evaluation results.
        api_key: API key for OpenAI, Azure OpenAI, or OpenAI-compatible API.
        base_url: Base URL for OpenAI-compatible API (e.g., http://localhost:11434/v1).
        azure_endpoint: Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com).
        azure_api_version: Azure OpenAI API version (e.g., 2025-01-01-preview).
        mode: Evaluation mode ("evaluate" or "benchmark").
        models: Models to test in benchmark mode.
        latency_iterations: Number of iterations for latency testing.
    """
    self._validate_inputs(config_path, dataset_path, batch_size, mode, latency_iterations)

    self.config_path = config_path
    self.dataset_path = dataset_path
    self.stages = stages
    self.batch_size = batch_size
    self.output_dir = output_dir
    self.api_key = api_key
    self.base_url = base_url
    self.azure_endpoint = azure_endpoint
    self.azure_api_version = azure_api_version or "2025-01-01-preview"
    self.mode = mode
    self.models = models or DEFAULT_BENCHMARK_MODELS
    self.latency_iterations = latency_iterations

    # Validate Azure configuration
    if azure_endpoint and not AsyncAzureOpenAI:
        raise ValueError(
            "Azure OpenAI support requires openai>=1.0.0. "
            "Please upgrade: pip install --upgrade openai"
        )

run async

run() -> None

Run the evaluation pipeline for all specified stages.

Source code in src/guardrails/evals/guardrail_evals.py
134
135
136
137
138
139
140
141
142
143
async def run(self) -> None:
    """Run the evaluation pipeline for all specified stages."""
    try:
        if self.mode == "benchmark":
            await self._run_benchmark()
        else:
            await self._run_evaluation()
    except Exception as e:
        logger.error("Evaluation failed: %s", e)
        raise

main

main() -> None

Run the evaluation script.

Source code in src/guardrails/evals/guardrail_evals.py
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
def main() -> None:
    """Run the evaluation script."""
    parser = argparse.ArgumentParser(
        description="Run guardrail evaluations",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Standard evaluation of all stages
  python guardrail_evals.py --config-path config.json --dataset-path data.jsonl

  # Multi-stage evaluation
  python guardrail_evals.py --config-path config.json --dataset-path data.jsonl --stages pre_flight input

  # Benchmark mode with OpenAI models
  python guardrail_evals.py --config-path config.json --dataset-path data.jsonl --mode benchmark --models gpt-5 gpt-5-mini

  # Azure OpenAI benchmark
  python guardrail_evals.py --config-path config.json --dataset-path data.jsonl --mode benchmark \\
    --azure-endpoint https://your-resource.openai.azure.com --api-key your-key \\
    --models gpt-4o gpt-4o-mini

  # Ollama local models
  python guardrail_evals.py --config-path config.json --dataset-path data.jsonl --mode benchmark \\
    --base-url http://localhost:11434/v1 --api-key fake-key --models llama3 mistral

  # vLLM or other OpenAI-compatible API
  python guardrail_evals.py --config-path config.json --dataset-path data.jsonl --mode benchmark \\
    --base-url http://your-server:8000/v1 --api-key your-key --models your-model
        """
    )

    # Required arguments
    parser.add_argument(
        "--config-path",
        type=Path,
        required=True,
        help="Path to the guardrail config file",
    )
    parser.add_argument(
        "--dataset-path",
        type=Path,
        required=True,
        help="Path to the evaluation dataset",
    )

    # Evaluation mode
    parser.add_argument(
        "--mode",
        choices=["evaluate", "benchmark"],
        default="evaluate",
        help="Evaluation mode: 'evaluate' for standard evaluation, 'benchmark' for model comparison (default: evaluate)",
    )

    # Optional evaluation arguments
    parser.add_argument(
        "--stages",
        nargs="+",
        choices=VALID_STAGES,
        help="Pipeline stages to evaluate. If not specified, evaluates all stages found in config.",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=DEFAULT_BATCH_SIZE,
        help=f"Number of samples to process in parallel (default: {DEFAULT_BATCH_SIZE})",
    )
    parser.add_argument(
        "--output-dir",
        type=Path,
        default=Path("results"),
        help="Directory to save evaluation results (default: results)",
    )

    # API configuration
    parser.add_argument(
        "--api-key",
        type=str,
        help="API key for OpenAI, Azure OpenAI, or OpenAI-compatible API",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        help="Base URL for OpenAI-compatible API (e.g., http://localhost:11434/v1 for Ollama)",
    )
    parser.add_argument(
        "--azure-endpoint",
        type=str,
        help="Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com)",
    )
    parser.add_argument(
        "--azure-api-version",
        type=str,
        default="2025-01-01-preview",
        help="Azure OpenAI API version (default: 2025-01-01-preview)",
    )

    # Benchmark-only arguments
    parser.add_argument(
        "--models",
        nargs="+",
        help="Models to test in benchmark mode (default: gpt-5, gpt-5-mini, gpt-5-nano, gpt-4.1, gpt-4.1-mini, gpt-4.1-nano)",
    )
    parser.add_argument(
        "--latency-iterations",
        type=int,
        default=DEFAULT_LATENCY_ITERATIONS,
        help=f"Number of iterations for latency testing in benchmark mode (default: {DEFAULT_LATENCY_ITERATIONS})",
    )

    args = parser.parse_args()

    # Validate arguments
    try:
        if not args.config_path.exists():
            print(f"❌ Error: Config file not found: {args.config_path}")
            sys.exit(1)

        if not args.dataset_path.exists():
            print(f"❌ Error: Dataset file not found: {args.dataset_path}")
            sys.exit(1)

        if args.batch_size <= 0:
            print(f"❌ Error: Batch size must be positive, got: {args.batch_size}")
            sys.exit(1)

        if args.latency_iterations <= 0:
            print(f"❌ Error: Latency iterations must be positive, got: {args.latency_iterations}")
            sys.exit(1)

        if args.stages:
            invalid_stages = [stage for stage in args.stages if stage not in VALID_STAGES]
            if invalid_stages:
                print(f"❌ Error: Invalid stages: {invalid_stages}. Valid stages are: {', '.join(VALID_STAGES)}")
                sys.exit(1)

        if args.mode == "benchmark" and args.stages and len(args.stages) > 1:
            print("⚠️  Warning: Benchmark mode only uses the first specified stage. Additional stages will be ignored.")

        # Validate provider configuration
        azure_endpoint = getattr(args, 'azure_endpoint', None)
        base_url = getattr(args, 'base_url', None)

        if azure_endpoint and base_url:
            print("❌ Error: Cannot specify both --azure-endpoint and --base-url. Choose one provider.")
            sys.exit(1)

        if azure_endpoint and not args.api_key:
            print("❌ Error: --api-key is required when using --azure-endpoint")
            sys.exit(1)

    except Exception as e:
        print(f"❌ Error validating arguments: {e}")
        sys.exit(1)

    # Run evaluation
    try:
        print(f"🚀 Starting guardrail evaluation in {args.mode} mode...")
        print(f"   Config: {args.config_path}")
        print(f"   Dataset: {args.dataset_path}")
        print(f"   Output: {args.output_dir}")

        # Show provider configuration
        if getattr(args, 'azure_endpoint', None):
            print(f"   Provider: Azure OpenAI ({args.azure_endpoint})")
        elif getattr(args, 'base_url', None):
            print(f"   Provider: OpenAI-compatible API ({args.base_url})")
        else:
            print("   Provider: OpenAI")

        if args.mode == "benchmark":
            print(f"   Models: {', '.join(args.models or DEFAULT_BENCHMARK_MODELS)}")
            print(f"   Latency iterations: {args.latency_iterations}")

        eval = GuardrailEval(
            config_path=args.config_path,
            dataset_path=args.dataset_path,
            stages=args.stages,
            batch_size=args.batch_size,
            output_dir=args.output_dir,
            api_key=args.api_key,
            base_url=getattr(args, 'base_url', None),
            azure_endpoint=getattr(args, 'azure_endpoint', None),
            azure_api_version=getattr(args, 'azure_api_version', None),
            mode=args.mode,
            models=args.models,
            latency_iterations=args.latency_iterations,
        )

        asyncio.run(eval.run())
        print("✅ Evaluation completed successfully!")

    except KeyboardInterrupt:
        print("\n⚠️  Evaluation interrupted by user")
        sys.exit(1)
    except Exception as e:
        print(f"❌ Evaluation failed: {e}")
        if logger.isEnabledFor(logging.DEBUG):
            import traceback
            traceback.print_exc()
        sys.exit(1)