Skip to content

Advanced SQLite Sessions

AdvancedSQLiteSession is an enhanced version of the basic SQLiteSession that provides advanced conversation management capabilities including conversation branching, detailed usage analytics, and structured conversation queries.

Features

  • Conversation branching: Create alternative conversation paths from any user message
  • Usage tracking: Detailed token usage analytics per turn with full JSON breakdowns
  • Structured queries: Get conversations by turns, tool usage statistics, and more
  • Branch management: Independent branch switching and management
  • Message structure metadata: Track message types, tool usage, and conversation flow

Quick start

from agents import Agent, Runner
from agents.extensions.memory import AdvancedSQLiteSession

# Create agent
agent = Agent(
    name="Assistant",
    instructions="Reply very concisely.",
)

# Create an advanced session
session = AdvancedSQLiteSession(
    session_id="conversation_123",
    db_path="conversations.db",
    create_tables=True
)

# First conversation turn
result = await Runner.run(
    agent,
    "What city is the Golden Gate Bridge in?",
    session=session
)
print(result.final_output)  # "San Francisco"

# IMPORTANT: Store usage data
await session.store_run_usage(result)

# Continue conversation
result = await Runner.run(
    agent,
    "What state is it in?",
    session=session
)
print(result.final_output)  # "California"
await session.store_run_usage(result)

Initialization

from agents.extensions.memory import AdvancedSQLiteSession

# Basic initialization
session = AdvancedSQLiteSession(
    session_id="my_conversation",
    create_tables=True  # Auto-create advanced tables
)

# With persistent storage
session = AdvancedSQLiteSession(
    session_id="user_123",
    db_path="path/to/conversations.db",
    create_tables=True
)

# With custom logger
import logging
logger = logging.getLogger("my_app")
session = AdvancedSQLiteSession(
    session_id="session_456",
    create_tables=True,
    logger=logger
)

Parameters

  • session_id (str): Unique identifier for the conversation session
  • db_path (str | Path): Path to SQLite database file. Defaults to :memory: for in-memory storage
  • create_tables (bool): Whether to automatically create the advanced tables. Defaults to False
  • logger (logging.Logger | None): Custom logger for the session. Defaults to module logger

Usage tracking

AdvancedSQLiteSession provides detailed usage analytics by storing token usage data per conversation turn. This is entirely dependent on the store_run_usage method being called after each agent run.

Storing usage data

# After each agent run, store the usage data
result = await Runner.run(agent, "Hello", session=session)
await session.store_run_usage(result)

# This stores:
# - Total tokens used
# - Input/output token breakdown
# - Request count
# - Detailed JSON token information (if available)

Retrieving usage statistics

# Get session-level usage (all branches)
session_usage = await session.get_session_usage()
if session_usage:
    print(f"Total requests: {session_usage['requests']}")
    print(f"Total tokens: {session_usage['total_tokens']}")
    print(f"Input tokens: {session_usage['input_tokens']}")
    print(f"Output tokens: {session_usage['output_tokens']}")
    print(f"Total turns: {session_usage['total_turns']}")

# Get usage for specific branch
branch_usage = await session.get_session_usage(branch_id="main")

# Get usage by turn
turn_usage = await session.get_turn_usage()
for turn_data in turn_usage:
    print(f"Turn {turn_data['user_turn_number']}: {turn_data['total_tokens']} tokens")
    if turn_data['input_tokens_details']:
        print(f"  Input details: {turn_data['input_tokens_details']}")
    if turn_data['output_tokens_details']:
        print(f"  Output details: {turn_data['output_tokens_details']}")

# Get usage for specific turn
turn_2_usage = await session.get_turn_usage(user_turn_number=2)

Conversation branching

One of the key features of AdvancedSQLiteSession is the ability to create conversation branches from any user message, allowing you to explore alternative conversation paths.

Creating branches

# Get available turns for branching
turns = await session.get_conversation_turns()
for turn in turns:
    print(f"Turn {turn['turn']}: {turn['content']}")
    print(f"Can branch: {turn['can_branch']}")

# Create a branch from turn 2
branch_id = await session.create_branch_from_turn(2)
print(f"Created branch: {branch_id}")

# Create a branch with custom name
branch_id = await session.create_branch_from_turn(
    2, 
    branch_name="alternative_path"
)

# Create branch by searching for content
branch_id = await session.create_branch_from_content(
    "weather", 
    branch_name="weather_focus"
)

Branch management

# List all branches
branches = await session.list_branches()
for branch in branches:
    current = " (current)" if branch["is_current"] else ""
    print(f"{branch['branch_id']}: {branch['user_turns']} turns, {branch['message_count']} messages{current}")

# Switch between branches
await session.switch_to_branch("main")
await session.switch_to_branch(branch_id)

# Delete a branch
await session.delete_branch(branch_id, force=True)  # force=True allows deleting current branch

Branch workflow example

# Original conversation
result = await Runner.run(agent, "What's the capital of France?", session=session)
await session.store_run_usage(result)

result = await Runner.run(agent, "What's the weather like there?", session=session)
await session.store_run_usage(result)

# Create branch from turn 2 (weather question)
branch_id = await session.create_branch_from_turn(2, "weather_focus")

# Continue in new branch with different question
result = await Runner.run(
    agent, 
    "What are the main tourist attractions in Paris?", 
    session=session
)
await session.store_run_usage(result)

# Switch back to main branch
await session.switch_to_branch("main")

# Continue original conversation
result = await Runner.run(
    agent, 
    "How expensive is it to visit?", 
    session=session
)
await session.store_run_usage(result)

Structured queries

AdvancedSQLiteSession provides several methods for analyzing conversation structure and content.

Conversation analysis

# Get conversation organized by turns
conversation_by_turns = await session.get_conversation_by_turns()
for turn_num, items in conversation_by_turns.items():
    print(f"Turn {turn_num}: {len(items)} items")
    for item in items:
        if item["tool_name"]:
            print(f"  - {item['type']} (tool: {item['tool_name']})")
        else:
            print(f"  - {item['type']}")

# Get tool usage statistics
tool_usage = await session.get_tool_usage()
for tool_name, count, turn in tool_usage:
    print(f"{tool_name}: used {count} times in turn {turn}")

# Find turns by content
matching_turns = await session.find_turns_by_content("weather")
for turn in matching_turns:
    print(f"Turn {turn['turn']}: {turn['content']}")

Message structure

The session automatically tracks message structure including:

  • Message types (user, assistant, tool_call, etc.)
  • Tool names for tool calls
  • Turn numbers and sequence numbers
  • Branch associations
  • Timestamps

Database schema

AdvancedSQLiteSession extends the basic SQLite schema with two additional tables:

message_structure table

CREATE TABLE message_structure (
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    session_id TEXT NOT NULL,
    message_id INTEGER NOT NULL,
    branch_id TEXT NOT NULL DEFAULT 'main',
    message_type TEXT NOT NULL,
    sequence_number INTEGER NOT NULL,
    user_turn_number INTEGER,
    branch_turn_number INTEGER,
    tool_name TEXT,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    FOREIGN KEY (session_id) REFERENCES agent_sessions(session_id) ON DELETE CASCADE,
    FOREIGN KEY (message_id) REFERENCES agent_messages(id) ON DELETE CASCADE
);

turn_usage table

CREATE TABLE turn_usage (
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    session_id TEXT NOT NULL,
    branch_id TEXT NOT NULL DEFAULT 'main',
    user_turn_number INTEGER NOT NULL,
    requests INTEGER DEFAULT 0,
    input_tokens INTEGER DEFAULT 0,
    output_tokens INTEGER DEFAULT 0,
    total_tokens INTEGER DEFAULT 0,
    input_tokens_details JSON,
    output_tokens_details JSON,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    FOREIGN KEY (session_id) REFERENCES agent_sessions(session_id) ON DELETE CASCADE,
    UNIQUE(session_id, branch_id, user_turn_number)
);

Complete example

Check out the complete example for a comprehensive demonstration of all features.

API Reference