Skip to content

Tracing module

TracingProcessor

Bases: ABC

Interface for processing and monitoring traces and spans in the OpenAI Agents system.

This abstract class defines the interface that all tracing processors must implement. Processors receive notifications when traces and spans start and end, allowing them to collect, process, and export tracing data.

Example
class CustomProcessor(TracingProcessor):
    def __init__(self):
        self.active_traces = {}
        self.active_spans = {}

    def on_trace_start(self, trace):
        self.active_traces[trace.trace_id] = trace

    def on_trace_end(self, trace):
        # Process completed trace
        del self.active_traces[trace.trace_id]

    def on_span_start(self, span):
        self.active_spans[span.span_id] = span

    def on_span_end(self, span):
        # Process completed span
        del self.active_spans[span.span_id]

    def shutdown(self):
        # Clean up resources
        self.active_traces.clear()
        self.active_spans.clear()

    def force_flush(self):
        # Force processing of any queued items
        pass
Notes
  • All methods should be thread-safe
  • Methods should not block for long periods
  • Handle errors gracefully to prevent disrupting agent execution
Source code in src/agents/tracing/processor_interface.py
class TracingProcessor(abc.ABC):
    """Interface for processing and monitoring traces and spans in the OpenAI Agents system.

    This abstract class defines the interface that all tracing processors must implement.
    Processors receive notifications when traces and spans start and end, allowing them
    to collect, process, and export tracing data.

    Example:
        ```python
        class CustomProcessor(TracingProcessor):
            def __init__(self):
                self.active_traces = {}
                self.active_spans = {}

            def on_trace_start(self, trace):
                self.active_traces[trace.trace_id] = trace

            def on_trace_end(self, trace):
                # Process completed trace
                del self.active_traces[trace.trace_id]

            def on_span_start(self, span):
                self.active_spans[span.span_id] = span

            def on_span_end(self, span):
                # Process completed span
                del self.active_spans[span.span_id]

            def shutdown(self):
                # Clean up resources
                self.active_traces.clear()
                self.active_spans.clear()

            def force_flush(self):
                # Force processing of any queued items
                pass
        ```

    Notes:
        - All methods should be thread-safe
        - Methods should not block for long periods
        - Handle errors gracefully to prevent disrupting agent execution
    """

    @abc.abstractmethod
    def on_trace_start(self, trace: "Trace") -> None:
        """Called when a new trace begins execution.

        Args:
            trace: The trace that started. Contains workflow name and metadata.

        Notes:
            - Called synchronously on trace start
            - Should return quickly to avoid blocking execution
            - Any errors should be caught and handled internally
        """
        pass

    @abc.abstractmethod
    def on_trace_end(self, trace: "Trace") -> None:
        """Called when a trace completes execution.

        Args:
            trace: The completed trace containing all spans and results.

        Notes:
            - Called synchronously when trace finishes
            - Good time to export/process the complete trace
            - Should handle cleanup of any trace-specific resources
        """
        pass

    @abc.abstractmethod
    def on_span_start(self, span: "Span[Any]") -> None:
        """Called when a new span begins execution.

        Args:
            span: The span that started. Contains operation details and context.

        Notes:
            - Called synchronously on span start
            - Should return quickly to avoid blocking execution
            - Spans are automatically nested under current trace/span
        """
        pass

    @abc.abstractmethod
    def on_span_end(self, span: "Span[Any]") -> None:
        """Called when a span completes execution.

        Args:
            span: The completed span containing execution results.

        Notes:
            - Called synchronously when span finishes
            - Should not block or raise exceptions
            - Good time to export/process the individual span
        """
        pass

    @abc.abstractmethod
    def shutdown(self) -> None:
        """Called when the application stops to clean up resources.

        Should perform any necessary cleanup like:
        - Flushing queued traces/spans
        - Closing connections
        - Releasing resources
        """
        pass

    @abc.abstractmethod
    def force_flush(self) -> None:
        """Forces immediate processing of any queued traces/spans.

        Notes:
            - Should process all queued items before returning
            - Useful before shutdown or when immediate processing is needed
            - May block while processing completes
        """
        pass

on_trace_start abstractmethod

on_trace_start(trace: Trace) -> None

Called when a new trace begins execution.

Parameters:

Name Type Description Default
trace Trace

The trace that started. Contains workflow name and metadata.

required
Notes
  • Called synchronously on trace start
  • Should return quickly to avoid blocking execution
  • Any errors should be caught and handled internally
Source code in src/agents/tracing/processor_interface.py
@abc.abstractmethod
def on_trace_start(self, trace: "Trace") -> None:
    """Called when a new trace begins execution.

    Args:
        trace: The trace that started. Contains workflow name and metadata.

    Notes:
        - Called synchronously on trace start
        - Should return quickly to avoid blocking execution
        - Any errors should be caught and handled internally
    """
    pass

on_trace_end abstractmethod

on_trace_end(trace: Trace) -> None

Called when a trace completes execution.

Parameters:

Name Type Description Default
trace Trace

The completed trace containing all spans and results.

required
Notes
  • Called synchronously when trace finishes
  • Good time to export/process the complete trace
  • Should handle cleanup of any trace-specific resources
Source code in src/agents/tracing/processor_interface.py
@abc.abstractmethod
def on_trace_end(self, trace: "Trace") -> None:
    """Called when a trace completes execution.

    Args:
        trace: The completed trace containing all spans and results.

    Notes:
        - Called synchronously when trace finishes
        - Good time to export/process the complete trace
        - Should handle cleanup of any trace-specific resources
    """
    pass

on_span_start abstractmethod

on_span_start(span: Span[Any]) -> None

Called when a new span begins execution.

Parameters:

Name Type Description Default
span Span[Any]

The span that started. Contains operation details and context.

required
Notes
  • Called synchronously on span start
  • Should return quickly to avoid blocking execution
  • Spans are automatically nested under current trace/span
Source code in src/agents/tracing/processor_interface.py
@abc.abstractmethod
def on_span_start(self, span: "Span[Any]") -> None:
    """Called when a new span begins execution.

    Args:
        span: The span that started. Contains operation details and context.

    Notes:
        - Called synchronously on span start
        - Should return quickly to avoid blocking execution
        - Spans are automatically nested under current trace/span
    """
    pass

on_span_end abstractmethod

on_span_end(span: Span[Any]) -> None

Called when a span completes execution.

Parameters:

Name Type Description Default
span Span[Any]

The completed span containing execution results.

required
Notes
  • Called synchronously when span finishes
  • Should not block or raise exceptions
  • Good time to export/process the individual span
Source code in src/agents/tracing/processor_interface.py
@abc.abstractmethod
def on_span_end(self, span: "Span[Any]") -> None:
    """Called when a span completes execution.

    Args:
        span: The completed span containing execution results.

    Notes:
        - Called synchronously when span finishes
        - Should not block or raise exceptions
        - Good time to export/process the individual span
    """
    pass

shutdown abstractmethod

shutdown() -> None

Called when the application stops to clean up resources.

Should perform any necessary cleanup like: - Flushing queued traces/spans - Closing connections - Releasing resources

Source code in src/agents/tracing/processor_interface.py
@abc.abstractmethod
def shutdown(self) -> None:
    """Called when the application stops to clean up resources.

    Should perform any necessary cleanup like:
    - Flushing queued traces/spans
    - Closing connections
    - Releasing resources
    """
    pass

force_flush abstractmethod

force_flush() -> None

Forces immediate processing of any queued traces/spans.

Notes
  • Should process all queued items before returning
  • Useful before shutdown or when immediate processing is needed
  • May block while processing completes
Source code in src/agents/tracing/processor_interface.py
@abc.abstractmethod
def force_flush(self) -> None:
    """Forces immediate processing of any queued traces/spans.

    Notes:
        - Should process all queued items before returning
        - Useful before shutdown or when immediate processing is needed
        - May block while processing completes
    """
    pass

TraceProvider

Bases: ABC

Interface for creating traces and spans.

Source code in src/agents/tracing/provider.py
class TraceProvider(ABC):
    """Interface for creating traces and spans."""

    @abstractmethod
    def register_processor(self, processor: TracingProcessor) -> None:
        """Add a processor that will receive all traces and spans."""

    @abstractmethod
    def set_processors(self, processors: list[TracingProcessor]) -> None:
        """Replace the list of processors with ``processors``."""

    @abstractmethod
    def get_current_trace(self) -> Trace | None:
        """Return the currently active trace, if any."""

    @abstractmethod
    def get_current_span(self) -> Span[Any] | None:
        """Return the currently active span, if any."""

    @abstractmethod
    def set_disabled(self, disabled: bool) -> None:
        """Enable or disable tracing globally."""

    @abstractmethod
    def time_iso(self) -> str:
        """Return the current time in ISO 8601 format."""

    @abstractmethod
    def gen_trace_id(self) -> str:
        """Generate a new trace identifier."""

    @abstractmethod
    def gen_span_id(self) -> str:
        """Generate a new span identifier."""

    @abstractmethod
    def gen_group_id(self) -> str:
        """Generate a new group identifier."""

    @abstractmethod
    def create_trace(
        self,
        name: str,
        trace_id: str | None = None,
        group_id: str | None = None,
        metadata: dict[str, Any] | None = None,
        disabled: bool = False,
    ) -> Trace:
        """Create a new trace."""

    @abstractmethod
    def create_span(
        self,
        span_data: TSpanData,
        span_id: str | None = None,
        parent: Trace | Span[Any] | None = None,
        disabled: bool = False,
    ) -> Span[TSpanData]:
        """Create a new span."""

    @abstractmethod
    def shutdown(self) -> None:
        """Clean up any resources used by the provider."""

register_processor abstractmethod

register_processor(processor: TracingProcessor) -> None

Add a processor that will receive all traces and spans.

Source code in src/agents/tracing/provider.py
@abstractmethod
def register_processor(self, processor: TracingProcessor) -> None:
    """Add a processor that will receive all traces and spans."""

set_processors abstractmethod

set_processors(processors: list[TracingProcessor]) -> None

Replace the list of processors with processors.

Source code in src/agents/tracing/provider.py
@abstractmethod
def set_processors(self, processors: list[TracingProcessor]) -> None:
    """Replace the list of processors with ``processors``."""

get_current_trace abstractmethod

get_current_trace() -> Trace | None

Return the currently active trace, if any.

Source code in src/agents/tracing/provider.py
@abstractmethod
def get_current_trace(self) -> Trace | None:
    """Return the currently active trace, if any."""

get_current_span abstractmethod

get_current_span() -> Span[Any] | None

Return the currently active span, if any.

Source code in src/agents/tracing/provider.py
@abstractmethod
def get_current_span(self) -> Span[Any] | None:
    """Return the currently active span, if any."""

set_disabled abstractmethod

set_disabled(disabled: bool) -> None

Enable or disable tracing globally.

Source code in src/agents/tracing/provider.py
@abstractmethod
def set_disabled(self, disabled: bool) -> None:
    """Enable or disable tracing globally."""

time_iso abstractmethod

time_iso() -> str

Return the current time in ISO 8601 format.

Source code in src/agents/tracing/provider.py
@abstractmethod
def time_iso(self) -> str:
    """Return the current time in ISO 8601 format."""

gen_trace_id abstractmethod

gen_trace_id() -> str

Generate a new trace identifier.

Source code in src/agents/tracing/provider.py
@abstractmethod
def gen_trace_id(self) -> str:
    """Generate a new trace identifier."""

gen_span_id abstractmethod

gen_span_id() -> str

Generate a new span identifier.

Source code in src/agents/tracing/provider.py
@abstractmethod
def gen_span_id(self) -> str:
    """Generate a new span identifier."""

gen_group_id abstractmethod

gen_group_id() -> str

Generate a new group identifier.

Source code in src/agents/tracing/provider.py
@abstractmethod
def gen_group_id(self) -> str:
    """Generate a new group identifier."""

create_trace abstractmethod

create_trace(
    name: str,
    trace_id: str | None = None,
    group_id: str | None = None,
    metadata: dict[str, Any] | None = None,
    disabled: bool = False,
) -> Trace

Create a new trace.

Source code in src/agents/tracing/provider.py
@abstractmethod
def create_trace(
    self,
    name: str,
    trace_id: str | None = None,
    group_id: str | None = None,
    metadata: dict[str, Any] | None = None,
    disabled: bool = False,
) -> Trace:
    """Create a new trace."""

create_span abstractmethod

create_span(
    span_data: TSpanData,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[TSpanData]

Create a new span.

Source code in src/agents/tracing/provider.py
@abstractmethod
def create_span(
    self,
    span_data: TSpanData,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[TSpanData]:
    """Create a new span."""

shutdown abstractmethod

shutdown() -> None

Clean up any resources used by the provider.

Source code in src/agents/tracing/provider.py
@abstractmethod
def shutdown(self) -> None:
    """Clean up any resources used by the provider."""

AgentSpanData

Bases: SpanData

Represents an Agent Span in the trace. Includes name, handoffs, tools, and output type.

Source code in src/agents/tracing/span_data.py
class AgentSpanData(SpanData):
    """
    Represents an Agent Span in the trace.
    Includes name, handoffs, tools, and output type.
    """

    __slots__ = ("name", "handoffs", "tools", "output_type")

    def __init__(
        self,
        name: str,
        handoffs: list[str] | None = None,
        tools: list[str] | None = None,
        output_type: str | None = None,
    ):
        self.name = name
        self.handoffs: list[str] | None = handoffs
        self.tools: list[str] | None = tools
        self.output_type: str | None = output_type

    @property
    def type(self) -> str:
        return "agent"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "name": self.name,
            "handoffs": self.handoffs,
            "tools": self.tools,
            "output_type": self.output_type,
        }

CustomSpanData

Bases: SpanData

Represents a Custom Span in the trace. Includes name and data property bag.

Source code in src/agents/tracing/span_data.py
class CustomSpanData(SpanData):
    """
    Represents a Custom Span in the trace.
    Includes name and data property bag.
    """

    __slots__ = ("name", "data")

    def __init__(self, name: str, data: dict[str, Any]):
        self.name = name
        self.data = data

    @property
    def type(self) -> str:
        return "custom"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "name": self.name,
            "data": self.data,
        }

FunctionSpanData

Bases: SpanData

Represents a Function Span in the trace. Includes input, output and MCP data (if applicable).

Source code in src/agents/tracing/span_data.py
class FunctionSpanData(SpanData):
    """
    Represents a Function Span in the trace.
    Includes input, output and MCP data (if applicable).
    """

    __slots__ = ("name", "input", "output", "mcp_data")

    def __init__(
        self,
        name: str,
        input: str | None,
        output: Any | None,
        mcp_data: dict[str, Any] | None = None,
    ):
        self.name = name
        self.input = input
        self.output = output
        self.mcp_data = mcp_data

    @property
    def type(self) -> str:
        return "function"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "name": self.name,
            "input": self.input,
            "output": str(self.output) if self.output else None,
            "mcp_data": self.mcp_data,
        }

GenerationSpanData

Bases: SpanData

Represents a Generation Span in the trace. Includes input, output, model, model configuration, and usage.

Source code in src/agents/tracing/span_data.py
class GenerationSpanData(SpanData):
    """
    Represents a Generation Span in the trace.
    Includes input, output, model, model configuration, and usage.
    """

    __slots__ = (
        "input",
        "output",
        "model",
        "model_config",
        "usage",
    )

    def __init__(
        self,
        input: Sequence[Mapping[str, Any]] | None = None,
        output: Sequence[Mapping[str, Any]] | None = None,
        model: str | None = None,
        model_config: Mapping[str, Any] | None = None,
        usage: dict[str, Any] | None = None,
    ):
        self.input = input
        self.output = output
        self.model = model
        self.model_config = model_config
        self.usage = usage

    @property
    def type(self) -> str:
        return "generation"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "input": self.input,
            "output": self.output,
            "model": self.model,
            "model_config": self.model_config,
            "usage": self.usage,
        }

GuardrailSpanData

Bases: SpanData

Represents a Guardrail Span in the trace. Includes name and triggered status.

Source code in src/agents/tracing/span_data.py
class GuardrailSpanData(SpanData):
    """
    Represents a Guardrail Span in the trace.
    Includes name and triggered status.
    """

    __slots__ = ("name", "triggered")

    def __init__(self, name: str, triggered: bool = False):
        self.name = name
        self.triggered = triggered

    @property
    def type(self) -> str:
        return "guardrail"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "name": self.name,
            "triggered": self.triggered,
        }

HandoffSpanData

Bases: SpanData

Represents a Handoff Span in the trace. Includes source and destination agents.

Source code in src/agents/tracing/span_data.py
class HandoffSpanData(SpanData):
    """
    Represents a Handoff Span in the trace.
    Includes source and destination agents.
    """

    __slots__ = ("from_agent", "to_agent")

    def __init__(self, from_agent: str | None, to_agent: str | None):
        self.from_agent = from_agent
        self.to_agent = to_agent

    @property
    def type(self) -> str:
        return "handoff"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "from_agent": self.from_agent,
            "to_agent": self.to_agent,
        }

MCPListToolsSpanData

Bases: SpanData

Represents an MCP List Tools Span in the trace. Includes server and result.

Source code in src/agents/tracing/span_data.py
class MCPListToolsSpanData(SpanData):
    """
    Represents an MCP List Tools Span in the trace.
    Includes server and result.
    """

    __slots__ = (
        "server",
        "result",
    )

    def __init__(self, server: str | None = None, result: list[str] | None = None):
        self.server = server
        self.result = result

    @property
    def type(self) -> str:
        return "mcp_tools"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "server": self.server,
            "result": self.result,
        }

ResponseSpanData

Bases: SpanData

Represents a Response Span in the trace. Includes response and input.

Source code in src/agents/tracing/span_data.py
class ResponseSpanData(SpanData):
    """
    Represents a Response Span in the trace.
    Includes response and input.
    """

    __slots__ = ("response", "input")

    def __init__(
        self,
        response: Response | None = None,
        input: str | list[ResponseInputItemParam] | None = None,
    ) -> None:
        self.response = response
        # This is not used by the OpenAI trace processors, but is useful for other tracing
        # processor implementations
        self.input = input

    @property
    def type(self) -> str:
        return "response"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "response_id": self.response.id if self.response else None,
        }

SpanData

Bases: ABC

Represents span data in the trace.

Source code in src/agents/tracing/span_data.py
class SpanData(abc.ABC):
    """
    Represents span data in the trace.
    """

    @abc.abstractmethod
    def export(self) -> dict[str, Any]:
        """Export the span data as a dictionary."""
        pass

    @property
    @abc.abstractmethod
    def type(self) -> str:
        """Return the type of the span."""
        pass

type abstractmethod property

type: str

Return the type of the span.

export abstractmethod

export() -> dict[str, Any]

Export the span data as a dictionary.

Source code in src/agents/tracing/span_data.py
@abc.abstractmethod
def export(self) -> dict[str, Any]:
    """Export the span data as a dictionary."""
    pass

SpeechGroupSpanData

Bases: SpanData

Represents a Speech Group Span in the trace.

Source code in src/agents/tracing/span_data.py
class SpeechGroupSpanData(SpanData):
    """
    Represents a Speech Group Span in the trace.
    """

    __slots__ = "input"

    def __init__(
        self,
        input: str | None = None,
    ):
        self.input = input

    @property
    def type(self) -> str:
        return "speech_group"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "input": self.input,
        }

SpeechSpanData

Bases: SpanData

Represents a Speech Span in the trace. Includes input, output, model, model configuration, and first content timestamp.

Source code in src/agents/tracing/span_data.py
class SpeechSpanData(SpanData):
    """
    Represents a Speech Span in the trace.
    Includes input, output, model, model configuration, and first content timestamp.
    """

    __slots__ = ("input", "output", "model", "model_config", "first_content_at")

    def __init__(
        self,
        input: str | None = None,
        output: str | None = None,
        output_format: str | None = "pcm",
        model: str | None = None,
        model_config: Mapping[str, Any] | None = None,
        first_content_at: str | None = None,
    ):
        self.input = input
        self.output = output
        self.output_format = output_format
        self.model = model
        self.model_config = model_config
        self.first_content_at = first_content_at

    @property
    def type(self) -> str:
        return "speech"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "input": self.input,
            "output": {
                "data": self.output or "",
                "format": self.output_format,
            },
            "model": self.model,
            "model_config": self.model_config,
            "first_content_at": self.first_content_at,
        }

TranscriptionSpanData

Bases: SpanData

Represents a Transcription Span in the trace. Includes input, output, model, and model configuration.

Source code in src/agents/tracing/span_data.py
class TranscriptionSpanData(SpanData):
    """
    Represents a Transcription Span in the trace.
    Includes input, output, model, and model configuration.
    """

    __slots__ = (
        "input",
        "output",
        "model",
        "model_config",
    )

    def __init__(
        self,
        input: str | None = None,
        input_format: str | None = "pcm",
        output: str | None = None,
        model: str | None = None,
        model_config: Mapping[str, Any] | None = None,
    ):
        self.input = input
        self.input_format = input_format
        self.output = output
        self.model = model
        self.model_config = model_config

    @property
    def type(self) -> str:
        return "transcription"

    def export(self) -> dict[str, Any]:
        return {
            "type": self.type,
            "input": {
                "data": self.input or "",
                "format": self.input_format,
            },
            "output": self.output,
            "model": self.model,
            "model_config": self.model_config,
        }

Span

Bases: ABC, Generic[TSpanData]

Base class for representing traceable operations with timing and context.

A span represents a single operation within a trace (e.g., an LLM call, tool execution, or agent run). Spans track timing, relationships between operations, and operation-specific data.

Example
# Creating a custom span
with custom_span("database_query", {
    "operation": "SELECT",
    "table": "users"
}) as span:
    results = await db.query("SELECT * FROM users")
    span.set_output({"count": len(results)})

# Handling errors in spans
with custom_span("risky_operation") as span:
    try:
        result = perform_risky_operation()
    except Exception as e:
        span.set_error({
            "message": str(e),
            "data": {"operation": "risky_operation"}
        })
        raise

Notes: - Spans automatically nest under the current trace - Use context managers for reliable start/finish - Include relevant data but avoid sensitive information - Handle errors properly using set_error()

Source code in src/agents/tracing/spans.py
class Span(abc.ABC, Generic[TSpanData]):
    """Base class for representing traceable operations with timing and context.

    A span represents a single operation within a trace (e.g., an LLM call, tool execution,
    or agent run). Spans track timing, relationships between operations, and operation-specific
    data.

    Type Args:
        TSpanData: The type of span-specific data this span contains.

    Example:
        ```python
        # Creating a custom span
        with custom_span("database_query", {
            "operation": "SELECT",
            "table": "users"
        }) as span:
            results = await db.query("SELECT * FROM users")
            span.set_output({"count": len(results)})

        # Handling errors in spans
        with custom_span("risky_operation") as span:
            try:
                result = perform_risky_operation()
            except Exception as e:
                span.set_error({
                    "message": str(e),
                    "data": {"operation": "risky_operation"}
                })
                raise
        ```

        Notes:
        - Spans automatically nest under the current trace
        - Use context managers for reliable start/finish
        - Include relevant data but avoid sensitive information
        - Handle errors properly using set_error()
    """

    @property
    @abc.abstractmethod
    def trace_id(self) -> str:
        """The ID of the trace this span belongs to.

        Returns:
            str: Unique identifier of the parent trace.
        """
        pass

    @property
    @abc.abstractmethod
    def span_id(self) -> str:
        """Unique identifier for this span.

        Returns:
            str: The span's unique ID within its trace.
        """
        pass

    @property
    @abc.abstractmethod
    def span_data(self) -> TSpanData:
        """Operation-specific data for this span.

        Returns:
            TSpanData: Data specific to this type of span (e.g., LLM generation data).
        """
        pass

    @abc.abstractmethod
    def start(self, mark_as_current: bool = False):
        """
        Start the span.

        Args:
            mark_as_current: If true, the span will be marked as the current span.
        """
        pass

    @abc.abstractmethod
    def finish(self, reset_current: bool = False) -> None:
        """
        Finish the span.

        Args:
            reset_current: If true, the span will be reset as the current span.
        """
        pass

    @abc.abstractmethod
    def __enter__(self) -> Span[TSpanData]:
        pass

    @abc.abstractmethod
    def __exit__(self, exc_type, exc_val, exc_tb):
        pass

    @property
    @abc.abstractmethod
    def parent_id(self) -> str | None:
        """ID of the parent span, if any.

        Returns:
            str | None: The parent span's ID, or None if this is a root span.
        """
        pass

    @abc.abstractmethod
    def set_error(self, error: SpanError) -> None:
        pass

    @property
    @abc.abstractmethod
    def error(self) -> SpanError | None:
        """Any error that occurred during span execution.

        Returns:
            SpanError | None: Error details if an error occurred, None otherwise.
        """
        pass

    @abc.abstractmethod
    def export(self) -> dict[str, Any] | None:
        pass

    @property
    @abc.abstractmethod
    def started_at(self) -> str | None:
        """When the span started execution.

        Returns:
            str | None: ISO format timestamp of span start, None if not started.
        """
        pass

    @property
    @abc.abstractmethod
    def ended_at(self) -> str | None:
        """When the span finished execution.

        Returns:
            str | None: ISO format timestamp of span end, None if not finished.
        """
        pass

trace_id abstractmethod property

trace_id: str

The ID of the trace this span belongs to.

Returns:

Name Type Description
str str

Unique identifier of the parent trace.

span_id abstractmethod property

span_id: str

Unique identifier for this span.

Returns:

Name Type Description
str str

The span's unique ID within its trace.

span_data abstractmethod property

span_data: TSpanData

Operation-specific data for this span.

Returns:

Name Type Description
TSpanData TSpanData

Data specific to this type of span (e.g., LLM generation data).

parent_id abstractmethod property

parent_id: str | None

ID of the parent span, if any.

Returns:

Type Description
str | None

str | None: The parent span's ID, or None if this is a root span.

error abstractmethod property

error: SpanError | None

Any error that occurred during span execution.

Returns:

Type Description
SpanError | None

SpanError | None: Error details if an error occurred, None otherwise.

started_at abstractmethod property

started_at: str | None

When the span started execution.

Returns:

Type Description
str | None

str | None: ISO format timestamp of span start, None if not started.

ended_at abstractmethod property

ended_at: str | None

When the span finished execution.

Returns:

Type Description
str | None

str | None: ISO format timestamp of span end, None if not finished.

start abstractmethod

start(mark_as_current: bool = False)

Start the span.

Parameters:

Name Type Description Default
mark_as_current bool

If true, the span will be marked as the current span.

False
Source code in src/agents/tracing/spans.py
@abc.abstractmethod
def start(self, mark_as_current: bool = False):
    """
    Start the span.

    Args:
        mark_as_current: If true, the span will be marked as the current span.
    """
    pass

finish abstractmethod

finish(reset_current: bool = False) -> None

Finish the span.

Parameters:

Name Type Description Default
reset_current bool

If true, the span will be reset as the current span.

False
Source code in src/agents/tracing/spans.py
@abc.abstractmethod
def finish(self, reset_current: bool = False) -> None:
    """
    Finish the span.

    Args:
        reset_current: If true, the span will be reset as the current span.
    """
    pass

SpanError

Bases: TypedDict

Represents an error that occurred during span execution.

Attributes:

Name Type Description
message str

A human-readable error description

data dict[str, Any] | None

Optional dictionary containing additional error context

Source code in src/agents/tracing/spans.py
class SpanError(TypedDict):
    """Represents an error that occurred during span execution.

    Attributes:
        message: A human-readable error description
        data: Optional dictionary containing additional error context
    """

    message: str
    data: dict[str, Any] | None

Trace

Bases: ABC

A complete end-to-end workflow containing related spans and metadata.

A trace represents a logical workflow or operation (e.g., "Customer Service Query" or "Code Generation") and contains all the spans (individual operations) that occur during that workflow.

Example
# Basic trace usage
with trace("Order Processing") as t:
    validation_result = await Runner.run(validator, order_data)
    if validation_result.approved:
        await Runner.run(processor, order_data)

# Trace with metadata and grouping
with trace(
    "Customer Service",
    group_id="chat_123",
    metadata={"customer": "user_456"}
) as t:
    result = await Runner.run(support_agent, query)
Notes
  • Use descriptive workflow names
  • Group related traces with consistent group_ids
  • Add relevant metadata for filtering/analysis
  • Use context managers for reliable cleanup
  • Consider privacy when adding trace data
Source code in src/agents/tracing/traces.py
class Trace(abc.ABC):
    """A complete end-to-end workflow containing related spans and metadata.

    A trace represents a logical workflow or operation (e.g., "Customer Service Query"
    or "Code Generation") and contains all the spans (individual operations) that occur
    during that workflow.

    Example:
        ```python
        # Basic trace usage
        with trace("Order Processing") as t:
            validation_result = await Runner.run(validator, order_data)
            if validation_result.approved:
                await Runner.run(processor, order_data)

        # Trace with metadata and grouping
        with trace(
            "Customer Service",
            group_id="chat_123",
            metadata={"customer": "user_456"}
        ) as t:
            result = await Runner.run(support_agent, query)
        ```

    Notes:
        - Use descriptive workflow names
        - Group related traces with consistent group_ids
        - Add relevant metadata for filtering/analysis
        - Use context managers for reliable cleanup
        - Consider privacy when adding trace data
    """

    @abc.abstractmethod
    def __enter__(self) -> Trace:
        pass

    @abc.abstractmethod
    def __exit__(self, exc_type, exc_val, exc_tb):
        pass

    @abc.abstractmethod
    def start(self, mark_as_current: bool = False):
        """Start the trace and optionally mark it as the current trace.

        Args:
            mark_as_current: If true, marks this trace as the current trace
                in the execution context.

        Notes:
            - Must be called before any spans can be added
            - Only one trace can be current at a time
            - Thread-safe when using mark_as_current
        """
        pass

    @abc.abstractmethod
    def finish(self, reset_current: bool = False):
        """Finish the trace and optionally reset the current trace.

        Args:
            reset_current: If true, resets the current trace to the previous
                trace in the execution context.

        Notes:
            - Must be called to complete the trace
            - Finalizes all open spans
            - Thread-safe when using reset_current
        """
        pass

    @property
    @abc.abstractmethod
    def trace_id(self) -> str:
        """Get the unique identifier for this trace.

        Returns:
            str: The trace's unique ID in the format 'trace_<32_alphanumeric>'

        Notes:
            - IDs are globally unique
            - Used to link spans to their parent trace
            - Can be used to look up traces in the dashboard
        """
        pass

    @property
    @abc.abstractmethod
    def name(self) -> str:
        """Get the human-readable name of this workflow trace.

        Returns:
            str: The workflow name (e.g., "Customer Service", "Data Processing")

        Notes:
            - Should be descriptive and meaningful
            - Used for grouping and filtering in the dashboard
            - Helps identify the purpose of the trace
        """
        pass

    @abc.abstractmethod
    def export(self) -> dict[str, Any] | None:
        """Export the trace data as a serializable dictionary.

        Returns:
            dict | None: Dictionary containing trace data, or None if tracing is disabled.

        Notes:
            - Includes all spans and their data
            - Used for sending traces to backends
            - May include metadata and group ID
        """
        pass

trace_id abstractmethod property

trace_id: str

Get the unique identifier for this trace.

Returns:

Name Type Description
str str

The trace's unique ID in the format 'trace_<32_alphanumeric>'

Notes
  • IDs are globally unique
  • Used to link spans to their parent trace
  • Can be used to look up traces in the dashboard

name abstractmethod property

name: str

Get the human-readable name of this workflow trace.

Returns:

Name Type Description
str str

The workflow name (e.g., "Customer Service", "Data Processing")

Notes
  • Should be descriptive and meaningful
  • Used for grouping and filtering in the dashboard
  • Helps identify the purpose of the trace

start abstractmethod

start(mark_as_current: bool = False)

Start the trace and optionally mark it as the current trace.

Parameters:

Name Type Description Default
mark_as_current bool

If true, marks this trace as the current trace in the execution context.

False
Notes
  • Must be called before any spans can be added
  • Only one trace can be current at a time
  • Thread-safe when using mark_as_current
Source code in src/agents/tracing/traces.py
@abc.abstractmethod
def start(self, mark_as_current: bool = False):
    """Start the trace and optionally mark it as the current trace.

    Args:
        mark_as_current: If true, marks this trace as the current trace
            in the execution context.

    Notes:
        - Must be called before any spans can be added
        - Only one trace can be current at a time
        - Thread-safe when using mark_as_current
    """
    pass

finish abstractmethod

finish(reset_current: bool = False)

Finish the trace and optionally reset the current trace.

Parameters:

Name Type Description Default
reset_current bool

If true, resets the current trace to the previous trace in the execution context.

False
Notes
  • Must be called to complete the trace
  • Finalizes all open spans
  • Thread-safe when using reset_current
Source code in src/agents/tracing/traces.py
@abc.abstractmethod
def finish(self, reset_current: bool = False):
    """Finish the trace and optionally reset the current trace.

    Args:
        reset_current: If true, resets the current trace to the previous
            trace in the execution context.

    Notes:
        - Must be called to complete the trace
        - Finalizes all open spans
        - Thread-safe when using reset_current
    """
    pass

export abstractmethod

export() -> dict[str, Any] | None

Export the trace data as a serializable dictionary.

Returns:

Type Description
dict[str, Any] | None

dict | None: Dictionary containing trace data, or None if tracing is disabled.

Notes
  • Includes all spans and their data
  • Used for sending traces to backends
  • May include metadata and group ID
Source code in src/agents/tracing/traces.py
@abc.abstractmethod
def export(self) -> dict[str, Any] | None:
    """Export the trace data as a serializable dictionary.

    Returns:
        dict | None: Dictionary containing trace data, or None if tracing is disabled.

    Notes:
        - Includes all spans and their data
        - Used for sending traces to backends
        - May include metadata and group ID
    """
    pass

agent_span

agent_span(
    name: str,
    handoffs: list[str] | None = None,
    tools: list[str] | None = None,
    output_type: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[AgentSpanData]

Create a new agent span. The span will not be started automatically, you should either do with agent_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
name str

The name of the agent.

required
handoffs list[str] | None

Optional list of agent names to which this agent could hand off control.

None
tools list[str] | None

Optional list of tool names available to this agent.

None
output_type str | None

Optional name of the output type produced by the agent.

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False

Returns:

Type Description
Span[AgentSpanData]

The newly created agent span.

Source code in src/agents/tracing/create.py
def agent_span(
    name: str,
    handoffs: list[str] | None = None,
    tools: list[str] | None = None,
    output_type: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[AgentSpanData]:
    """Create a new agent span. The span will not be started automatically, you should either do
    `with agent_span() ...` or call `span.start()` + `span.finish()` manually.

    Args:
        name: The name of the agent.
        handoffs: Optional list of agent names to which this agent could hand off control.
        tools: Optional list of tool names available to this agent.
        output_type: Optional name of the output type produced by the agent.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.

    Returns:
        The newly created agent span.
    """
    return get_trace_provider().create_span(
        span_data=AgentSpanData(name=name, handoffs=handoffs, tools=tools, output_type=output_type),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

custom_span

custom_span(
    name: str,
    data: dict[str, Any] | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[CustomSpanData]

Create a new custom span, to which you can add your own metadata. The span will not be started automatically, you should either do with custom_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
name str

The name of the custom span.

required
data dict[str, Any] | None

Arbitrary structured data to associate with the span.

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False

Returns:

Type Description
Span[CustomSpanData]

The newly created custom span.

Source code in src/agents/tracing/create.py
def custom_span(
    name: str,
    data: dict[str, Any] | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[CustomSpanData]:
    """Create a new custom span, to which you can add your own metadata. The span will not be
    started automatically, you should either do `with custom_span() ...` or call
    `span.start()` + `span.finish()` manually.

    Args:
        name: The name of the custom span.
        data: Arbitrary structured data to associate with the span.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.

    Returns:
        The newly created custom span.
    """
    return get_trace_provider().create_span(
        span_data=CustomSpanData(name=name, data=data or {}),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

function_span

function_span(
    name: str,
    input: str | None = None,
    output: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[FunctionSpanData]

Create a new function span. The span will not be started automatically, you should either do with function_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
name str

The name of the function.

required
input str | None

The input to the function.

None
output str | None

The output of the function.

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False

Returns:

Type Description
Span[FunctionSpanData]

The newly created function span.

Source code in src/agents/tracing/create.py
def function_span(
    name: str,
    input: str | None = None,
    output: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[FunctionSpanData]:
    """Create a new function span. The span will not be started automatically, you should either do
    `with function_span() ...` or call `span.start()` + `span.finish()` manually.

    Args:
        name: The name of the function.
        input: The input to the function.
        output: The output of the function.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.

    Returns:
        The newly created function span.
    """
    return get_trace_provider().create_span(
        span_data=FunctionSpanData(name=name, input=input, output=output),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

generation_span

generation_span(
    input: Sequence[Mapping[str, Any]] | None = None,
    output: Sequence[Mapping[str, Any]] | None = None,
    model: str | None = None,
    model_config: Mapping[str, Any] | None = None,
    usage: dict[str, Any] | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[GenerationSpanData]

Create a new generation span. The span will not be started automatically, you should either do with generation_span() ... or call span.start() + span.finish() manually.

This span captures the details of a model generation, including the input message sequence, any generated outputs, the model name and configuration, and usage data. If you only need to capture a model response identifier, use response_span() instead.

Parameters:

Name Type Description Default
input Sequence[Mapping[str, Any]] | None

The sequence of input messages sent to the model.

None
output Sequence[Mapping[str, Any]] | None

The sequence of output messages received from the model.

None
model str | None

The model identifier used for the generation.

None
model_config Mapping[str, Any] | None

The model configuration (hyperparameters) used.

None
usage dict[str, Any] | None

A dictionary of usage information (input tokens, output tokens, etc.).

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False

Returns:

Type Description
Span[GenerationSpanData]

The newly created generation span.

Source code in src/agents/tracing/create.py
def generation_span(
    input: Sequence[Mapping[str, Any]] | None = None,
    output: Sequence[Mapping[str, Any]] | None = None,
    model: str | None = None,
    model_config: Mapping[str, Any] | None = None,
    usage: dict[str, Any] | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[GenerationSpanData]:
    """Create a new generation span. The span will not be started automatically, you should either
    do `with generation_span() ...` or call `span.start()` + `span.finish()` manually.

    This span captures the details of a model generation, including the
    input message sequence, any generated outputs, the model name and
    configuration, and usage data. If you only need to capture a model
    response identifier, use `response_span()` instead.

    Args:
        input: The sequence of input messages sent to the model.
        output: The sequence of output messages received from the model.
        model: The model identifier used for the generation.
        model_config: The model configuration (hyperparameters) used.
        usage: A dictionary of usage information (input tokens, output tokens, etc.).
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.

    Returns:
        The newly created generation span.
    """
    return get_trace_provider().create_span(
        span_data=GenerationSpanData(
            input=input,
            output=output,
            model=model,
            model_config=model_config,
            usage=usage,
        ),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

get_current_span

get_current_span() -> Span[Any] | None

Returns the currently active span, if present.

Source code in src/agents/tracing/create.py
def get_current_span() -> Span[Any] | None:
    """Returns the currently active span, if present."""
    return get_trace_provider().get_current_span()

get_current_trace

get_current_trace() -> Trace | None

Returns the currently active trace, if present.

Source code in src/agents/tracing/create.py
def get_current_trace() -> Trace | None:
    """Returns the currently active trace, if present."""
    return get_trace_provider().get_current_trace()

guardrail_span

guardrail_span(
    name: str,
    triggered: bool = False,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[GuardrailSpanData]

Create a new guardrail span. The span will not be started automatically, you should either do with guardrail_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
name str

The name of the guardrail.

required
triggered bool

Whether the guardrail was triggered.

False
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False
Source code in src/agents/tracing/create.py
def guardrail_span(
    name: str,
    triggered: bool = False,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[GuardrailSpanData]:
    """Create a new guardrail span. The span will not be started automatically, you should either
    do `with guardrail_span() ...` or call `span.start()` + `span.finish()` manually.

    Args:
        name: The name of the guardrail.
        triggered: Whether the guardrail was triggered.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.
    """
    return get_trace_provider().create_span(
        span_data=GuardrailSpanData(name=name, triggered=triggered),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

handoff_span

handoff_span(
    from_agent: str | None = None,
    to_agent: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[HandoffSpanData]

Create a new handoff span. The span will not be started automatically, you should either do with handoff_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
from_agent str | None

The name of the agent that is handing off.

None
to_agent str | None

The name of the agent that is receiving the handoff.

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False

Returns:

Type Description
Span[HandoffSpanData]

The newly created handoff span.

Source code in src/agents/tracing/create.py
def handoff_span(
    from_agent: str | None = None,
    to_agent: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[HandoffSpanData]:
    """Create a new handoff span. The span will not be started automatically, you should either do
    `with handoff_span() ...` or call `span.start()` + `span.finish()` manually.

    Args:
        from_agent: The name of the agent that is handing off.
        to_agent: The name of the agent that is receiving the handoff.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.

    Returns:
        The newly created handoff span.
    """
    return get_trace_provider().create_span(
        span_data=HandoffSpanData(from_agent=from_agent, to_agent=to_agent),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

mcp_tools_span

mcp_tools_span(
    server: str | None = None,
    result: list[str] | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[MCPListToolsSpanData]

Create a new MCP list tools span. The span will not be started automatically, you should either do with mcp_tools_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
server str | None

The name of the MCP server.

None
result list[str] | None

The result of the MCP list tools call.

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False
Source code in src/agents/tracing/create.py
def mcp_tools_span(
    server: str | None = None,
    result: list[str] | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[MCPListToolsSpanData]:
    """Create a new MCP list tools span. The span will not be started automatically, you should
    either do `with mcp_tools_span() ...` or call `span.start()` + `span.finish()` manually.

    Args:
        server: The name of the MCP server.
        result: The result of the MCP list tools call.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.
    """
    return get_trace_provider().create_span(
        span_data=MCPListToolsSpanData(server=server, result=result),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

response_span

response_span(
    response: Response | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[ResponseSpanData]

Create a new response span. The span will not be started automatically, you should either do with response_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
response Response | None

The OpenAI Response object.

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False
Source code in src/agents/tracing/create.py
def response_span(
    response: Response | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[ResponseSpanData]:
    """Create a new response span. The span will not be started automatically, you should either do
    `with response_span() ...` or call `span.start()` + `span.finish()` manually.

    Args:
        response: The OpenAI Response object.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.
    """
    return get_trace_provider().create_span(
        span_data=ResponseSpanData(response=response),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

speech_group_span

speech_group_span(
    input: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[SpeechGroupSpanData]

Create a new speech group span. The span will not be started automatically, you should either do with speech_group_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
input str | None

The input text used for the speech request.

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False
Source code in src/agents/tracing/create.py
def speech_group_span(
    input: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[SpeechGroupSpanData]:
    """Create a new speech group span. The span will not be started automatically, you should
    either do `with speech_group_span() ...` or call `span.start()` + `span.finish()` manually.

    Args:
        input: The input text used for the speech request.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.
    """
    return get_trace_provider().create_span(
        span_data=SpeechGroupSpanData(input=input),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

speech_span

speech_span(
    model: str | None = None,
    input: str | None = None,
    output: str | None = None,
    output_format: str | None = "pcm",
    model_config: Mapping[str, Any] | None = None,
    first_content_at: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[SpeechSpanData]

Create a new speech span. The span will not be started automatically, you should either do with speech_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
model str | None

The name of the model used for the text-to-speech.

None
input str | None

The text input of the text-to-speech.

None
output str | None

The audio output of the text-to-speech as base64 encoded string of PCM audio bytes.

None
output_format str | None

The format of the audio output (defaults to "pcm").

'pcm'
model_config Mapping[str, Any] | None

The model configuration (hyperparameters) used.

None
first_content_at str | None

The time of the first byte of the audio output.

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False
Source code in src/agents/tracing/create.py
def speech_span(
    model: str | None = None,
    input: str | None = None,
    output: str | None = None,
    output_format: str | None = "pcm",
    model_config: Mapping[str, Any] | None = None,
    first_content_at: str | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[SpeechSpanData]:
    """Create a new speech span. The span will not be started automatically, you should either do
    `with speech_span() ...` or call `span.start()` + `span.finish()` manually.

    Args:
        model: The name of the model used for the text-to-speech.
        input: The text input of the text-to-speech.
        output: The audio output of the text-to-speech as base64 encoded string of PCM audio bytes.
        output_format: The format of the audio output (defaults to "pcm").
        model_config: The model configuration (hyperparameters) used.
        first_content_at: The time of the first byte of the audio output.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.
    """
    return get_trace_provider().create_span(
        span_data=SpeechSpanData(
            model=model,
            input=input,
            output=output,
            output_format=output_format,
            model_config=model_config,
            first_content_at=first_content_at,
        ),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

trace

trace(
    workflow_name: str,
    trace_id: str | None = None,
    group_id: str | None = None,
    metadata: dict[str, Any] | None = None,
    disabled: bool = False,
) -> Trace

Create a new trace. The trace will not be started automatically; you should either use it as a context manager (with trace(...):) or call trace.start() + trace.finish() manually.

In addition to the workflow name and optional grouping identifier, you can provide an arbitrary metadata dictionary to attach additional user-defined information to the trace.

Parameters:

Name Type Description Default
workflow_name str

The name of the logical app or workflow. For example, you might provide "code_bot" for a coding agent, or "customer_support_agent" for a customer support agent.

required
trace_id str | None

The ID of the trace. Optional. If not provided, we will generate an ID. We recommend using util.gen_trace_id() to generate a trace ID, to guarantee that IDs are correctly formatted.

None
group_id str | None

Optional grouping identifier to link multiple traces from the same conversation or process. For instance, you might use a chat thread ID.

None
metadata dict[str, Any] | None

Optional dictionary of additional metadata to attach to the trace.

None
disabled bool

If True, we will return a Trace but the Trace will not be recorded.

False

Returns:

Type Description
Trace

The newly created trace object.

Source code in src/agents/tracing/create.py
def trace(
    workflow_name: str,
    trace_id: str | None = None,
    group_id: str | None = None,
    metadata: dict[str, Any] | None = None,
    disabled: bool = False,
) -> Trace:
    """
    Create a new trace. The trace will not be started automatically; you should either use
    it as a context manager (`with trace(...):`) or call `trace.start()` + `trace.finish()`
    manually.

    In addition to the workflow name and optional grouping identifier, you can provide
    an arbitrary metadata dictionary to attach additional user-defined information to
    the trace.

    Args:
        workflow_name: The name of the logical app or workflow. For example, you might provide
            "code_bot" for a coding agent, or "customer_support_agent" for a customer support agent.
        trace_id: The ID of the trace. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_trace_id()` to generate a trace ID, to guarantee that IDs are
            correctly formatted.
        group_id: Optional grouping identifier to link multiple traces from the same conversation
            or process. For instance, you might use a chat thread ID.
        metadata: Optional dictionary of additional metadata to attach to the trace.
        disabled: If True, we will return a Trace but the Trace will not be recorded.

    Returns:
        The newly created trace object.
    """
    current_trace = get_trace_provider().get_current_trace()
    if current_trace:
        logger.warning(
            "Trace already exists. Creating a new trace, but this is probably a mistake."
        )

    return get_trace_provider().create_trace(
        name=workflow_name,
        trace_id=trace_id,
        group_id=group_id,
        metadata=metadata,
        disabled=disabled,
    )

transcription_span

transcription_span(
    model: str | None = None,
    input: str | None = None,
    input_format: str | None = "pcm",
    output: str | None = None,
    model_config: Mapping[str, Any] | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[TranscriptionSpanData]

Create a new transcription span. The span will not be started automatically, you should either do with transcription_span() ... or call span.start() + span.finish() manually.

Parameters:

Name Type Description Default
model str | None

The name of the model used for the speech-to-text.

None
input str | None

The audio input of the speech-to-text transcription, as a base64 encoded string of audio bytes.

None
input_format str | None

The format of the audio input (defaults to "pcm").

'pcm'
output str | None

The output of the speech-to-text transcription.

None
model_config Mapping[str, Any] | None

The model configuration (hyperparameters) used.

None
span_id str | None

The ID of the span. Optional. If not provided, we will generate an ID. We recommend using util.gen_span_id() to generate a span ID, to guarantee that IDs are correctly formatted.

None
parent Trace | Span[Any] | None

The parent span or trace. If not provided, we will automatically use the current trace/span as the parent.

None
disabled bool

If True, we will return a Span but the Span will not be recorded.

False

Returns:

Type Description
Span[TranscriptionSpanData]

The newly created speech-to-text span.

Source code in src/agents/tracing/create.py
def transcription_span(
    model: str | None = None,
    input: str | None = None,
    input_format: str | None = "pcm",
    output: str | None = None,
    model_config: Mapping[str, Any] | None = None,
    span_id: str | None = None,
    parent: Trace | Span[Any] | None = None,
    disabled: bool = False,
) -> Span[TranscriptionSpanData]:
    """Create a new transcription span. The span will not be started automatically, you should
    either do `with transcription_span() ...` or call `span.start()` + `span.finish()` manually.

    Args:
        model: The name of the model used for the speech-to-text.
        input: The audio input of the speech-to-text transcription, as a base64 encoded string of
            audio bytes.
        input_format: The format of the audio input (defaults to "pcm").
        output: The output of the speech-to-text transcription.
        model_config: The model configuration (hyperparameters) used.
        span_id: The ID of the span. Optional. If not provided, we will generate an ID. We
            recommend using `util.gen_span_id()` to generate a span ID, to guarantee that IDs are
            correctly formatted.
        parent: The parent span or trace. If not provided, we will automatically use the current
            trace/span as the parent.
        disabled: If True, we will return a Span but the Span will not be recorded.

    Returns:
        The newly created speech-to-text span.
    """
    return get_trace_provider().create_span(
        span_data=TranscriptionSpanData(
            input=input,
            input_format=input_format,
            output=output,
            model=model,
            model_config=model_config,
        ),
        span_id=span_id,
        parent=parent,
        disabled=disabled,
    )

get_trace_provider

get_trace_provider() -> TraceProvider

Get the global trace provider used by tracing utilities.

Source code in src/agents/tracing/setup.py
def get_trace_provider() -> TraceProvider:
    """Get the global trace provider used by tracing utilities."""
    if GLOBAL_TRACE_PROVIDER is None:
        raise RuntimeError("Trace provider not set")
    return GLOBAL_TRACE_PROVIDER

set_trace_provider

set_trace_provider(provider: TraceProvider) -> None

Set the global trace provider used by tracing utilities.

Source code in src/agents/tracing/setup.py
def set_trace_provider(provider: TraceProvider) -> None:
    """Set the global trace provider used by tracing utilities."""
    global GLOBAL_TRACE_PROVIDER
    GLOBAL_TRACE_PROVIDER = provider

gen_span_id

gen_span_id() -> str

Generate a new span ID.

Source code in src/agents/tracing/util.py
def gen_span_id() -> str:
    """Generate a new span ID."""
    return get_trace_provider().gen_span_id()

gen_trace_id

gen_trace_id() -> str

Generate a new trace ID.

Source code in src/agents/tracing/util.py
def gen_trace_id() -> str:
    """Generate a new trace ID."""
    return get_trace_provider().gen_trace_id()

add_trace_processor

add_trace_processor(
    span_processor: TracingProcessor,
) -> None

Adds a new trace processor. This processor will receive all traces/spans.

Source code in src/agents/tracing/__init__.py
def add_trace_processor(span_processor: TracingProcessor) -> None:
    """
    Adds a new trace processor. This processor will receive all traces/spans.
    """
    get_trace_provider().register_processor(span_processor)

set_trace_processors

set_trace_processors(
    processors: list[TracingProcessor],
) -> None

Set the list of trace processors. This will replace the current list of processors.

Source code in src/agents/tracing/__init__.py
def set_trace_processors(processors: list[TracingProcessor]) -> None:
    """
    Set the list of trace processors. This will replace the current list of processors.
    """
    get_trace_provider().set_processors(processors)

set_tracing_disabled

set_tracing_disabled(disabled: bool) -> None

Set whether tracing is globally disabled.

Source code in src/agents/tracing/__init__.py
def set_tracing_disabled(disabled: bool) -> None:
    """
    Set whether tracing is globally disabled.
    """
    get_trace_provider().set_disabled(disabled)

set_tracing_export_api_key

set_tracing_export_api_key(api_key: str) -> None

Set the OpenAI API key for the backend exporter.

Source code in src/agents/tracing/__init__.py
def set_tracing_export_api_key(api_key: str) -> None:
    """
    Set the OpenAI API key for the backend exporter.
    """
    default_exporter().set_api_key(api_key)