Skip to content

Runner

Runner

Source code in src/agents/run.py
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
class Runner:
    @classmethod
    async def run(
        cls,
        starting_agent: Agent[TContext],
        input: str | list[TResponseInputItem],
        *,
        context: TContext | None = None,
        max_turns: int = DEFAULT_MAX_TURNS,
        hooks: RunHooks[TContext] | None = None,
        run_config: RunConfig | None = None,
    ) -> RunResult:
        """Run a workflow starting at the given agent. The agent will run in a loop until a final
        output is generated. The loop runs like so:
        1. The agent is invoked with the given input.
        2. If there is a final output (i.e. the agent produces something of type
            `agent.output_type`, the loop terminates.
        3. If there's a handoff, we run the loop again, with the new agent.
        4. Else, we run tool calls (if any), and re-run the loop.

        In two cases, the agent may raise an exception:
        1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised.
        2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised.

        Note that only the first agent's input guardrails are run.

        Args:
            starting_agent: The starting agent to run.
            input: The initial input to the agent. You can pass a single string for a user message,
                or a list of input items.
            context: The context to run the agent with.
            max_turns: The maximum number of turns to run the agent for. A turn is defined as one
                AI invocation (including any tool calls that might occur).
            hooks: An object that receives callbacks on various lifecycle events.
            run_config: Global settings for the entire agent run.

        Returns:
            A run result containing all the inputs, guardrail results and the output of the last
            agent. Agents may perform handoffs, so we don't know the specific type of the output.
        """
        if hooks is None:
            hooks = RunHooks[Any]()
        if run_config is None:
            run_config = RunConfig()

        with TraceCtxManager(
            workflow_name=run_config.workflow_name,
            trace_id=run_config.trace_id,
            group_id=run_config.group_id,
            metadata=run_config.trace_metadata,
            disabled=run_config.tracing_disabled,
        ):
            current_turn = 0
            original_input: str | list[TResponseInputItem] = copy.deepcopy(input)
            generated_items: list[RunItem] = []
            model_responses: list[ModelResponse] = []

            context_wrapper: RunContextWrapper[TContext] = RunContextWrapper(
                context=context,  # type: ignore
            )

            input_guardrail_results: list[InputGuardrailResult] = []

            current_span: Span[AgentSpanData] | None = None
            current_agent = starting_agent
            should_run_agent_start_hooks = True

            try:
                while True:
                    # Start an agent span if we don't have one. This span is ended if the current
                    # agent changes, or if the agent loop ends.
                    if current_span is None:
                        handoff_names = [h.agent_name for h in cls._get_handoffs(current_agent)]
                        tool_names = [t.name for t in current_agent.tools]
                        if output_schema := cls._get_output_schema(current_agent):
                            output_type_name = output_schema.output_type_name()
                        else:
                            output_type_name = "str"

                        current_span = agent_span(
                            name=current_agent.name,
                            handoffs=handoff_names,
                            tools=tool_names,
                            output_type=output_type_name,
                        )
                        current_span.start(mark_as_current=True)

                    current_turn += 1
                    if current_turn > max_turns:
                        _utils.attach_error_to_span(
                            current_span,
                            SpanError(
                                message="Max turns exceeded",
                                data={"max_turns": max_turns},
                            ),
                        )
                        raise MaxTurnsExceeded(f"Max turns ({max_turns}) exceeded")

                    logger.debug(
                        f"Running agent {current_agent.name} (turn {current_turn})",
                    )

                    if current_turn == 1:
                        input_guardrail_results, turn_result = await asyncio.gather(
                            cls._run_input_guardrails(
                                starting_agent,
                                starting_agent.input_guardrails
                                + (run_config.input_guardrails or []),
                                copy.deepcopy(input),
                                context_wrapper,
                            ),
                            cls._run_single_turn(
                                agent=current_agent,
                                original_input=original_input,
                                generated_items=generated_items,
                                hooks=hooks,
                                context_wrapper=context_wrapper,
                                run_config=run_config,
                                should_run_agent_start_hooks=should_run_agent_start_hooks,
                            ),
                        )
                    else:
                        turn_result = await cls._run_single_turn(
                            agent=current_agent,
                            original_input=original_input,
                            generated_items=generated_items,
                            hooks=hooks,
                            context_wrapper=context_wrapper,
                            run_config=run_config,
                            should_run_agent_start_hooks=should_run_agent_start_hooks,
                        )
                    should_run_agent_start_hooks = False

                    model_responses.append(turn_result.model_response)
                    original_input = turn_result.original_input
                    generated_items = turn_result.generated_items

                    if isinstance(turn_result.next_step, NextStepFinalOutput):
                        output_guardrail_results = await cls._run_output_guardrails(
                            current_agent.output_guardrails + (run_config.output_guardrails or []),
                            current_agent,
                            turn_result.next_step.output,
                            context_wrapper,
                        )
                        return RunResult(
                            input=original_input,
                            new_items=generated_items,
                            raw_responses=model_responses,
                            final_output=turn_result.next_step.output,
                            _last_agent=current_agent,
                            input_guardrail_results=input_guardrail_results,
                            output_guardrail_results=output_guardrail_results,
                        )
                    elif isinstance(turn_result.next_step, NextStepHandoff):
                        current_agent = cast(Agent[TContext], turn_result.next_step.new_agent)
                        current_span.finish(reset_current=True)
                        current_span = None
                        should_run_agent_start_hooks = True
                    elif isinstance(turn_result.next_step, NextStepRunAgain):
                        pass
                    else:
                        raise AgentsException(
                            f"Unknown next step type: {type(turn_result.next_step)}"
                        )
            finally:
                if current_span:
                    current_span.finish(reset_current=True)

    @classmethod
    def run_sync(
        cls,
        starting_agent: Agent[TContext],
        input: str | list[TResponseInputItem],
        *,
        context: TContext | None = None,
        max_turns: int = DEFAULT_MAX_TURNS,
        hooks: RunHooks[TContext] | None = None,
        run_config: RunConfig | None = None,
    ) -> RunResult:
        """Run a workflow synchronously, starting at the given agent. Note that this just wraps the
        `run` method, so it will not work if there's already an event loop (e.g. inside an async
        function, or in a Jupyter notebook or async context like FastAPI). For those cases, use
        the `run` method instead.

        The agent will run in a loop until a final output is generated. The loop runs like so:
        1. The agent is invoked with the given input.
        2. If there is a final output (i.e. the agent produces something of type
            `agent.output_type`, the loop terminates.
        3. If there's a handoff, we run the loop again, with the new agent.
        4. Else, we run tool calls (if any), and re-run the loop.

        In two cases, the agent may raise an exception:
        1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised.
        2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised.

        Note that only the first agent's input guardrails are run.

        Args:
            starting_agent: The starting agent to run.
            input: The initial input to the agent. You can pass a single string for a user message,
                or a list of input items.
            context: The context to run the agent with.
            max_turns: The maximum number of turns to run the agent for. A turn is defined as one
                AI invocation (including any tool calls that might occur).
            hooks: An object that receives callbacks on various lifecycle events.
            run_config: Global settings for the entire agent run.

        Returns:
            A run result containing all the inputs, guardrail results and the output of the last
            agent. Agents may perform handoffs, so we don't know the specific type of the output.
        """
        return asyncio.get_event_loop().run_until_complete(
            cls.run(
                starting_agent,
                input,
                context=context,
                max_turns=max_turns,
                hooks=hooks,
                run_config=run_config,
            )
        )

    @classmethod
    def run_streamed(
        cls,
        starting_agent: Agent[TContext],
        input: str | list[TResponseInputItem],
        context: TContext | None = None,
        max_turns: int = DEFAULT_MAX_TURNS,
        hooks: RunHooks[TContext] | None = None,
        run_config: RunConfig | None = None,
    ) -> RunResultStreaming:
        """Run a workflow starting at the given agent in streaming mode. The returned result object
        contains a method you can use to stream semantic events as they are generated.

        The agent will run in a loop until a final output is generated. The loop runs like so:
        1. The agent is invoked with the given input.
        2. If there is a final output (i.e. the agent produces something of type
            `agent.output_type`, the loop terminates.
        3. If there's a handoff, we run the loop again, with the new agent.
        4. Else, we run tool calls (if any), and re-run the loop.

        In two cases, the agent may raise an exception:
        1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised.
        2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised.

        Note that only the first agent's input guardrails are run.

        Args:
            starting_agent: The starting agent to run.
            input: The initial input to the agent. You can pass a single string for a user message,
                or a list of input items.
            context: The context to run the agent with.
            max_turns: The maximum number of turns to run the agent for. A turn is defined as one
                AI invocation (including any tool calls that might occur).
            hooks: An object that receives callbacks on various lifecycle events.
            run_config: Global settings for the entire agent run.

        Returns:
            A result object that contains data about the run, as well as a method to stream events.
        """
        if hooks is None:
            hooks = RunHooks[Any]()
        if run_config is None:
            run_config = RunConfig()

        # If there's already a trace, we don't create a new one. In addition, we can't end the
        # trace here, because the actual work is done in `stream_events` and this method ends
        # before that.
        new_trace = (
            None
            if get_current_trace()
            else trace(
                workflow_name=run_config.workflow_name,
                trace_id=run_config.trace_id,
                group_id=run_config.group_id,
                metadata=run_config.trace_metadata,
                disabled=run_config.tracing_disabled,
            )
        )
        # Need to start the trace here, because the current trace contextvar is captured at
        # asyncio.create_task time
        if new_trace:
            new_trace.start(mark_as_current=True)

        output_schema = cls._get_output_schema(starting_agent)
        context_wrapper: RunContextWrapper[TContext] = RunContextWrapper(
            context=context  # type: ignore
        )

        streamed_result = RunResultStreaming(
            input=copy.deepcopy(input),
            new_items=[],
            current_agent=starting_agent,
            raw_responses=[],
            final_output=None,
            is_complete=False,
            current_turn=0,
            max_turns=max_turns,
            input_guardrail_results=[],
            output_guardrail_results=[],
            _current_agent_output_schema=output_schema,
            _trace=new_trace,
        )

        # Kick off the actual agent loop in the background and return the streamed result object.
        streamed_result._run_impl_task = asyncio.create_task(
            cls._run_streamed_impl(
                starting_input=input,
                streamed_result=streamed_result,
                starting_agent=starting_agent,
                max_turns=max_turns,
                hooks=hooks,
                context_wrapper=context_wrapper,
                run_config=run_config,
            )
        )
        return streamed_result

    @classmethod
    async def _run_input_guardrails_with_queue(
        cls,
        agent: Agent[Any],
        guardrails: list[InputGuardrail[TContext]],
        input: str | list[TResponseInputItem],
        context: RunContextWrapper[TContext],
        streamed_result: RunResultStreaming,
        parent_span: Span[Any],
    ):
        queue = streamed_result._input_guardrail_queue

        # We'll run the guardrails and push them onto the queue as they complete
        guardrail_tasks = [
            asyncio.create_task(
                RunImpl.run_single_input_guardrail(agent, guardrail, input, context)
            )
            for guardrail in guardrails
        ]
        guardrail_results = []
        try:
            for done in asyncio.as_completed(guardrail_tasks):
                result = await done
                if result.output.tripwire_triggered:
                    _utils.attach_error_to_span(
                        parent_span,
                        SpanError(
                            message="Guardrail tripwire triggered",
                            data={
                                "guardrail": result.guardrail.get_name(),
                                "type": "input_guardrail",
                            },
                        ),
                    )
                queue.put_nowait(result)
                guardrail_results.append(result)
        except Exception:
            for t in guardrail_tasks:
                t.cancel()
            raise

        streamed_result.input_guardrail_results = guardrail_results

    @classmethod
    async def _run_streamed_impl(
        cls,
        starting_input: str | list[TResponseInputItem],
        streamed_result: RunResultStreaming,
        starting_agent: Agent[TContext],
        max_turns: int,
        hooks: RunHooks[TContext],
        context_wrapper: RunContextWrapper[TContext],
        run_config: RunConfig,
    ):
        current_span: Span[AgentSpanData] | None = None
        current_agent = starting_agent
        current_turn = 0
        should_run_agent_start_hooks = True

        streamed_result._event_queue.put_nowait(AgentUpdatedStreamEvent(new_agent=current_agent))

        try:
            while True:
                if streamed_result.is_complete:
                    break

                # Start an agent span if we don't have one. This span is ended if the current
                # agent changes, or if the agent loop ends.
                if current_span is None:
                    handoff_names = [h.agent_name for h in cls._get_handoffs(current_agent)]
                    tool_names = [t.name for t in current_agent.tools]
                    if output_schema := cls._get_output_schema(current_agent):
                        output_type_name = output_schema.output_type_name()
                    else:
                        output_type_name = "str"

                    current_span = agent_span(
                        name=current_agent.name,
                        handoffs=handoff_names,
                        tools=tool_names,
                        output_type=output_type_name,
                    )
                    current_span.start(mark_as_current=True)

                current_turn += 1
                streamed_result.current_turn = current_turn

                if current_turn > max_turns:
                    _utils.attach_error_to_span(
                        current_span,
                        SpanError(
                            message="Max turns exceeded",
                            data={"max_turns": max_turns},
                        ),
                    )
                    streamed_result._event_queue.put_nowait(QueueCompleteSentinel())
                    break

                if current_turn == 1:
                    # Run the input guardrails in the background and put the results on the queue
                    streamed_result._input_guardrails_task = asyncio.create_task(
                        cls._run_input_guardrails_with_queue(
                            starting_agent,
                            starting_agent.input_guardrails + (run_config.input_guardrails or []),
                            copy.deepcopy(ItemHelpers.input_to_new_input_list(starting_input)),
                            context_wrapper,
                            streamed_result,
                            current_span,
                        )
                    )
                try:
                    turn_result = await cls._run_single_turn_streamed(
                        streamed_result,
                        current_agent,
                        hooks,
                        context_wrapper,
                        run_config,
                        should_run_agent_start_hooks,
                    )
                    should_run_agent_start_hooks = False

                    streamed_result.raw_responses = streamed_result.raw_responses + [
                        turn_result.model_response
                    ]
                    streamed_result.input = turn_result.original_input
                    streamed_result.new_items = turn_result.generated_items

                    if isinstance(turn_result.next_step, NextStepHandoff):
                        current_agent = turn_result.next_step.new_agent
                        current_span.finish(reset_current=True)
                        current_span = None
                        should_run_agent_start_hooks = True
                        streamed_result._event_queue.put_nowait(
                            AgentUpdatedStreamEvent(new_agent=current_agent)
                        )
                    elif isinstance(turn_result.next_step, NextStepFinalOutput):
                        streamed_result._output_guardrails_task = asyncio.create_task(
                            cls._run_output_guardrails(
                                current_agent.output_guardrails
                                + (run_config.output_guardrails or []),
                                current_agent,
                                turn_result.next_step.output,
                                context_wrapper,
                            )
                        )

                        try:
                            output_guardrail_results = await streamed_result._output_guardrails_task
                        except Exception:
                            # Exceptions will be checked in the stream_events loop
                            output_guardrail_results = []

                        streamed_result.output_guardrail_results = output_guardrail_results
                        streamed_result.final_output = turn_result.next_step.output
                        streamed_result.is_complete = True
                        streamed_result._event_queue.put_nowait(QueueCompleteSentinel())
                    elif isinstance(turn_result.next_step, NextStepRunAgain):
                        pass
                except Exception as e:
                    if current_span:
                        _utils.attach_error_to_span(
                            current_span,
                            SpanError(
                                message="Error in agent run",
                                data={"error": str(e)},
                            ),
                        )
                    streamed_result.is_complete = True
                    streamed_result._event_queue.put_nowait(QueueCompleteSentinel())
                    raise

            streamed_result.is_complete = True
        finally:
            if current_span:
                current_span.finish(reset_current=True)

    @classmethod
    async def _run_single_turn_streamed(
        cls,
        streamed_result: RunResultStreaming,
        agent: Agent[TContext],
        hooks: RunHooks[TContext],
        context_wrapper: RunContextWrapper[TContext],
        run_config: RunConfig,
        should_run_agent_start_hooks: bool,
    ) -> SingleStepResult:
        if should_run_agent_start_hooks:
            await asyncio.gather(
                hooks.on_agent_start(context_wrapper, agent),
                (
                    agent.hooks.on_start(context_wrapper, agent)
                    if agent.hooks
                    else _utils.noop_coroutine()
                ),
            )

        output_schema = cls._get_output_schema(agent)

        streamed_result.current_agent = agent
        streamed_result._current_agent_output_schema = output_schema

        system_prompt = await agent.get_system_prompt(context_wrapper)

        handoffs = cls._get_handoffs(agent)

        model = cls._get_model(agent, run_config)
        model_settings = agent.model_settings.resolve(run_config.model_settings)
        final_response: ModelResponse | None = None

        input = ItemHelpers.input_to_new_input_list(streamed_result.input)
        input.extend([item.to_input_item() for item in streamed_result.new_items])

        # 1. Stream the output events
        async for event in model.stream_response(
            system_prompt,
            input,
            model_settings,
            agent.tools,
            output_schema,
            handoffs,
            get_model_tracing_impl(
                run_config.tracing_disabled, run_config.trace_include_sensitive_data
            ),
        ):
            if isinstance(event, ResponseCompletedEvent):
                usage = (
                    Usage(
                        requests=1,
                        input_tokens=event.response.usage.input_tokens,
                        output_tokens=event.response.usage.output_tokens,
                        total_tokens=event.response.usage.total_tokens,
                    )
                    if event.response.usage
                    else Usage()
                )
                final_response = ModelResponse(
                    output=event.response.output,
                    usage=usage,
                    referenceable_id=event.response.id,
                )

            streamed_result._event_queue.put_nowait(RawResponsesStreamEvent(data=event))

        # 2. At this point, the streaming is complete for this turn of the agent loop.
        if not final_response:
            raise ModelBehaviorError("Model did not produce a final response!")

        # 3. Now, we can process the turn as we do in the non-streaming case
        single_step_result = await cls._get_single_step_result_from_response(
            agent=agent,
            original_input=streamed_result.input,
            pre_step_items=streamed_result.new_items,
            new_response=final_response,
            output_schema=output_schema,
            handoffs=handoffs,
            hooks=hooks,
            context_wrapper=context_wrapper,
            run_config=run_config,
        )

        RunImpl.stream_step_result_to_queue(single_step_result, streamed_result._event_queue)
        return single_step_result

    @classmethod
    async def _run_single_turn(
        cls,
        *,
        agent: Agent[TContext],
        original_input: str | list[TResponseInputItem],
        generated_items: list[RunItem],
        hooks: RunHooks[TContext],
        context_wrapper: RunContextWrapper[TContext],
        run_config: RunConfig,
        should_run_agent_start_hooks: bool,
    ) -> SingleStepResult:
        # Ensure we run the hooks before anything else
        if should_run_agent_start_hooks:
            await asyncio.gather(
                hooks.on_agent_start(context_wrapper, agent),
                (
                    agent.hooks.on_start(context_wrapper, agent)
                    if agent.hooks
                    else _utils.noop_coroutine()
                ),
            )

        system_prompt = await agent.get_system_prompt(context_wrapper)

        output_schema = cls._get_output_schema(agent)
        handoffs = cls._get_handoffs(agent)
        input = ItemHelpers.input_to_new_input_list(original_input)
        input.extend([generated_item.to_input_item() for generated_item in generated_items])

        new_response = await cls._get_new_response(
            agent,
            system_prompt,
            input,
            output_schema,
            handoffs,
            context_wrapper,
            run_config,
        )

        return await cls._get_single_step_result_from_response(
            agent=agent,
            original_input=original_input,
            pre_step_items=generated_items,
            new_response=new_response,
            output_schema=output_schema,
            handoffs=handoffs,
            hooks=hooks,
            context_wrapper=context_wrapper,
            run_config=run_config,
        )

    @classmethod
    async def _get_single_step_result_from_response(
        cls,
        *,
        agent: Agent[TContext],
        original_input: str | list[TResponseInputItem],
        pre_step_items: list[RunItem],
        new_response: ModelResponse,
        output_schema: AgentOutputSchema | None,
        handoffs: list[Handoff],
        hooks: RunHooks[TContext],
        context_wrapper: RunContextWrapper[TContext],
        run_config: RunConfig,
    ) -> SingleStepResult:
        processed_response = RunImpl.process_model_response(
            agent=agent,
            response=new_response,
            output_schema=output_schema,
            handoffs=handoffs,
        )
        return await RunImpl.execute_tools_and_side_effects(
            agent=agent,
            original_input=original_input,
            pre_step_items=pre_step_items,
            new_response=new_response,
            processed_response=processed_response,
            output_schema=output_schema,
            hooks=hooks,
            context_wrapper=context_wrapper,
            run_config=run_config,
        )

    @classmethod
    async def _run_input_guardrails(
        cls,
        agent: Agent[Any],
        guardrails: list[InputGuardrail[TContext]],
        input: str | list[TResponseInputItem],
        context: RunContextWrapper[TContext],
    ) -> list[InputGuardrailResult]:
        if not guardrails:
            return []

        guardrail_tasks = [
            asyncio.create_task(
                RunImpl.run_single_input_guardrail(agent, guardrail, input, context)
            )
            for guardrail in guardrails
        ]

        guardrail_results = []

        for done in asyncio.as_completed(guardrail_tasks):
            result = await done
            if result.output.tripwire_triggered:
                # Cancel all guardrail tasks if a tripwire is triggered.
                for t in guardrail_tasks:
                    t.cancel()
                _utils.attach_error_to_current_span(
                    SpanError(
                        message="Guardrail tripwire triggered",
                        data={"guardrail": result.guardrail.get_name()},
                    )
                )
                raise InputGuardrailTripwireTriggered(result)
            else:
                guardrail_results.append(result)

        return guardrail_results

    @classmethod
    async def _run_output_guardrails(
        cls,
        guardrails: list[OutputGuardrail[TContext]],
        agent: Agent[TContext],
        agent_output: Any,
        context: RunContextWrapper[TContext],
    ) -> list[OutputGuardrailResult]:
        if not guardrails:
            return []

        guardrail_tasks = [
            asyncio.create_task(
                RunImpl.run_single_output_guardrail(guardrail, agent, agent_output, context)
            )
            for guardrail in guardrails
        ]

        guardrail_results = []

        for done in asyncio.as_completed(guardrail_tasks):
            result = await done
            if result.output.tripwire_triggered:
                # Cancel all guardrail tasks if a tripwire is triggered.
                for t in guardrail_tasks:
                    t.cancel()
                _utils.attach_error_to_current_span(
                    SpanError(
                        message="Guardrail tripwire triggered",
                        data={"guardrail": result.guardrail.get_name()},
                    )
                )
                raise OutputGuardrailTripwireTriggered(result)
            else:
                guardrail_results.append(result)

        return guardrail_results

    @classmethod
    async def _get_new_response(
        cls,
        agent: Agent[TContext],
        system_prompt: str | None,
        input: list[TResponseInputItem],
        output_schema: AgentOutputSchema | None,
        handoffs: list[Handoff],
        context_wrapper: RunContextWrapper[TContext],
        run_config: RunConfig,
    ) -> ModelResponse:
        model = cls._get_model(agent, run_config)
        model_settings = agent.model_settings.resolve(run_config.model_settings)
        new_response = await model.get_response(
            system_instructions=system_prompt,
            input=input,
            model_settings=model_settings,
            tools=agent.tools,
            output_schema=output_schema,
            handoffs=handoffs,
            tracing=get_model_tracing_impl(
                run_config.tracing_disabled, run_config.trace_include_sensitive_data
            ),
        )

        context_wrapper.usage.add(new_response.usage)

        return new_response

    @classmethod
    def _get_output_schema(cls, agent: Agent[Any]) -> AgentOutputSchema | None:
        if agent.output_type is None or agent.output_type is str:
            return None

        return AgentOutputSchema(agent.output_type)

    @classmethod
    def _get_handoffs(cls, agent: Agent[Any]) -> list[Handoff]:
        handoffs = []
        for handoff_item in agent.handoffs:
            if isinstance(handoff_item, Handoff):
                handoffs.append(handoff_item)
            elif isinstance(handoff_item, Agent):
                handoffs.append(handoff(handoff_item))
        return handoffs

    @classmethod
    def _get_model(cls, agent: Agent[Any], run_config: RunConfig) -> Model:
        if isinstance(run_config.model, Model):
            return run_config.model
        elif isinstance(run_config.model, str):
            return run_config.model_provider.get_model(run_config.model)
        elif isinstance(agent.model, Model):
            return agent.model

        return run_config.model_provider.get_model(agent.model)

run async classmethod

run(
    starting_agent: Agent[TContext],
    input: str | list[TResponseInputItem],
    *,
    context: TContext | None = None,
    max_turns: int = DEFAULT_MAX_TURNS,
    hooks: RunHooks[TContext] | None = None,
    run_config: RunConfig | None = None,
) -> RunResult

Run a workflow starting at the given agent. The agent will run in a loop until a final output is generated. The loop runs like so: 1. The agent is invoked with the given input. 2. If there is a final output (i.e. the agent produces something of type agent.output_type, the loop terminates. 3. If there's a handoff, we run the loop again, with the new agent. 4. Else, we run tool calls (if any), and re-run the loop.

In two cases, the agent may raise an exception: 1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised. 2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised.

Note that only the first agent's input guardrails are run.

Parameters:

Name Type Description Default
starting_agent Agent[TContext]

The starting agent to run.

required
input str | list[TResponseInputItem]

The initial input to the agent. You can pass a single string for a user message, or a list of input items.

required
context TContext | None

The context to run the agent with.

None
max_turns int

The maximum number of turns to run the agent for. A turn is defined as one AI invocation (including any tool calls that might occur).

DEFAULT_MAX_TURNS
hooks RunHooks[TContext] | None

An object that receives callbacks on various lifecycle events.

None
run_config RunConfig | None

Global settings for the entire agent run.

None

Returns:

Type Description
RunResult

A run result containing all the inputs, guardrail results and the output of the last

RunResult

agent. Agents may perform handoffs, so we don't know the specific type of the output.

Source code in src/agents/run.py
@classmethod
async def run(
    cls,
    starting_agent: Agent[TContext],
    input: str | list[TResponseInputItem],
    *,
    context: TContext | None = None,
    max_turns: int = DEFAULT_MAX_TURNS,
    hooks: RunHooks[TContext] | None = None,
    run_config: RunConfig | None = None,
) -> RunResult:
    """Run a workflow starting at the given agent. The agent will run in a loop until a final
    output is generated. The loop runs like so:
    1. The agent is invoked with the given input.
    2. If there is a final output (i.e. the agent produces something of type
        `agent.output_type`, the loop terminates.
    3. If there's a handoff, we run the loop again, with the new agent.
    4. Else, we run tool calls (if any), and re-run the loop.

    In two cases, the agent may raise an exception:
    1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised.
    2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised.

    Note that only the first agent's input guardrails are run.

    Args:
        starting_agent: The starting agent to run.
        input: The initial input to the agent. You can pass a single string for a user message,
            or a list of input items.
        context: The context to run the agent with.
        max_turns: The maximum number of turns to run the agent for. A turn is defined as one
            AI invocation (including any tool calls that might occur).
        hooks: An object that receives callbacks on various lifecycle events.
        run_config: Global settings for the entire agent run.

    Returns:
        A run result containing all the inputs, guardrail results and the output of the last
        agent. Agents may perform handoffs, so we don't know the specific type of the output.
    """
    if hooks is None:
        hooks = RunHooks[Any]()
    if run_config is None:
        run_config = RunConfig()

    with TraceCtxManager(
        workflow_name=run_config.workflow_name,
        trace_id=run_config.trace_id,
        group_id=run_config.group_id,
        metadata=run_config.trace_metadata,
        disabled=run_config.tracing_disabled,
    ):
        current_turn = 0
        original_input: str | list[TResponseInputItem] = copy.deepcopy(input)
        generated_items: list[RunItem] = []
        model_responses: list[ModelResponse] = []

        context_wrapper: RunContextWrapper[TContext] = RunContextWrapper(
            context=context,  # type: ignore
        )

        input_guardrail_results: list[InputGuardrailResult] = []

        current_span: Span[AgentSpanData] | None = None
        current_agent = starting_agent
        should_run_agent_start_hooks = True

        try:
            while True:
                # Start an agent span if we don't have one. This span is ended if the current
                # agent changes, or if the agent loop ends.
                if current_span is None:
                    handoff_names = [h.agent_name for h in cls._get_handoffs(current_agent)]
                    tool_names = [t.name for t in current_agent.tools]
                    if output_schema := cls._get_output_schema(current_agent):
                        output_type_name = output_schema.output_type_name()
                    else:
                        output_type_name = "str"

                    current_span = agent_span(
                        name=current_agent.name,
                        handoffs=handoff_names,
                        tools=tool_names,
                        output_type=output_type_name,
                    )
                    current_span.start(mark_as_current=True)

                current_turn += 1
                if current_turn > max_turns:
                    _utils.attach_error_to_span(
                        current_span,
                        SpanError(
                            message="Max turns exceeded",
                            data={"max_turns": max_turns},
                        ),
                    )
                    raise MaxTurnsExceeded(f"Max turns ({max_turns}) exceeded")

                logger.debug(
                    f"Running agent {current_agent.name} (turn {current_turn})",
                )

                if current_turn == 1:
                    input_guardrail_results, turn_result = await asyncio.gather(
                        cls._run_input_guardrails(
                            starting_agent,
                            starting_agent.input_guardrails
                            + (run_config.input_guardrails or []),
                            copy.deepcopy(input),
                            context_wrapper,
                        ),
                        cls._run_single_turn(
                            agent=current_agent,
                            original_input=original_input,
                            generated_items=generated_items,
                            hooks=hooks,
                            context_wrapper=context_wrapper,
                            run_config=run_config,
                            should_run_agent_start_hooks=should_run_agent_start_hooks,
                        ),
                    )
                else:
                    turn_result = await cls._run_single_turn(
                        agent=current_agent,
                        original_input=original_input,
                        generated_items=generated_items,
                        hooks=hooks,
                        context_wrapper=context_wrapper,
                        run_config=run_config,
                        should_run_agent_start_hooks=should_run_agent_start_hooks,
                    )
                should_run_agent_start_hooks = False

                model_responses.append(turn_result.model_response)
                original_input = turn_result.original_input
                generated_items = turn_result.generated_items

                if isinstance(turn_result.next_step, NextStepFinalOutput):
                    output_guardrail_results = await cls._run_output_guardrails(
                        current_agent.output_guardrails + (run_config.output_guardrails or []),
                        current_agent,
                        turn_result.next_step.output,
                        context_wrapper,
                    )
                    return RunResult(
                        input=original_input,
                        new_items=generated_items,
                        raw_responses=model_responses,
                        final_output=turn_result.next_step.output,
                        _last_agent=current_agent,
                        input_guardrail_results=input_guardrail_results,
                        output_guardrail_results=output_guardrail_results,
                    )
                elif isinstance(turn_result.next_step, NextStepHandoff):
                    current_agent = cast(Agent[TContext], turn_result.next_step.new_agent)
                    current_span.finish(reset_current=True)
                    current_span = None
                    should_run_agent_start_hooks = True
                elif isinstance(turn_result.next_step, NextStepRunAgain):
                    pass
                else:
                    raise AgentsException(
                        f"Unknown next step type: {type(turn_result.next_step)}"
                    )
        finally:
            if current_span:
                current_span.finish(reset_current=True)

run_sync classmethod

run_sync(
    starting_agent: Agent[TContext],
    input: str | list[TResponseInputItem],
    *,
    context: TContext | None = None,
    max_turns: int = DEFAULT_MAX_TURNS,
    hooks: RunHooks[TContext] | None = None,
    run_config: RunConfig | None = None,
) -> RunResult

Run a workflow synchronously, starting at the given agent. Note that this just wraps the run method, so it will not work if there's already an event loop (e.g. inside an async function, or in a Jupyter notebook or async context like FastAPI). For those cases, use the run method instead.

The agent will run in a loop until a final output is generated. The loop runs like so: 1. The agent is invoked with the given input. 2. If there is a final output (i.e. the agent produces something of type agent.output_type, the loop terminates. 3. If there's a handoff, we run the loop again, with the new agent. 4. Else, we run tool calls (if any), and re-run the loop.

In two cases, the agent may raise an exception: 1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised. 2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised.

Note that only the first agent's input guardrails are run.

Parameters:

Name Type Description Default
starting_agent Agent[TContext]

The starting agent to run.

required
input str | list[TResponseInputItem]

The initial input to the agent. You can pass a single string for a user message, or a list of input items.

required
context TContext | None

The context to run the agent with.

None
max_turns int

The maximum number of turns to run the agent for. A turn is defined as one AI invocation (including any tool calls that might occur).

DEFAULT_MAX_TURNS
hooks RunHooks[TContext] | None

An object that receives callbacks on various lifecycle events.

None
run_config RunConfig | None

Global settings for the entire agent run.

None

Returns:

Type Description
RunResult

A run result containing all the inputs, guardrail results and the output of the last

RunResult

agent. Agents may perform handoffs, so we don't know the specific type of the output.

Source code in src/agents/run.py
@classmethod
def run_sync(
    cls,
    starting_agent: Agent[TContext],
    input: str | list[TResponseInputItem],
    *,
    context: TContext | None = None,
    max_turns: int = DEFAULT_MAX_TURNS,
    hooks: RunHooks[TContext] | None = None,
    run_config: RunConfig | None = None,
) -> RunResult:
    """Run a workflow synchronously, starting at the given agent. Note that this just wraps the
    `run` method, so it will not work if there's already an event loop (e.g. inside an async
    function, or in a Jupyter notebook or async context like FastAPI). For those cases, use
    the `run` method instead.

    The agent will run in a loop until a final output is generated. The loop runs like so:
    1. The agent is invoked with the given input.
    2. If there is a final output (i.e. the agent produces something of type
        `agent.output_type`, the loop terminates.
    3. If there's a handoff, we run the loop again, with the new agent.
    4. Else, we run tool calls (if any), and re-run the loop.

    In two cases, the agent may raise an exception:
    1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised.
    2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised.

    Note that only the first agent's input guardrails are run.

    Args:
        starting_agent: The starting agent to run.
        input: The initial input to the agent. You can pass a single string for a user message,
            or a list of input items.
        context: The context to run the agent with.
        max_turns: The maximum number of turns to run the agent for. A turn is defined as one
            AI invocation (including any tool calls that might occur).
        hooks: An object that receives callbacks on various lifecycle events.
        run_config: Global settings for the entire agent run.

    Returns:
        A run result containing all the inputs, guardrail results and the output of the last
        agent. Agents may perform handoffs, so we don't know the specific type of the output.
    """
    return asyncio.get_event_loop().run_until_complete(
        cls.run(
            starting_agent,
            input,
            context=context,
            max_turns=max_turns,
            hooks=hooks,
            run_config=run_config,
        )
    )

run_streamed classmethod

run_streamed(
    starting_agent: Agent[TContext],
    input: str | list[TResponseInputItem],
    context: TContext | None = None,
    max_turns: int = DEFAULT_MAX_TURNS,
    hooks: RunHooks[TContext] | None = None,
    run_config: RunConfig | None = None,
) -> RunResultStreaming

Run a workflow starting at the given agent in streaming mode. The returned result object contains a method you can use to stream semantic events as they are generated.

The agent will run in a loop until a final output is generated. The loop runs like so: 1. The agent is invoked with the given input. 2. If there is a final output (i.e. the agent produces something of type agent.output_type, the loop terminates. 3. If there's a handoff, we run the loop again, with the new agent. 4. Else, we run tool calls (if any), and re-run the loop.

In two cases, the agent may raise an exception: 1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised. 2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised.

Note that only the first agent's input guardrails are run.

Parameters:

Name Type Description Default
starting_agent Agent[TContext]

The starting agent to run.

required
input str | list[TResponseInputItem]

The initial input to the agent. You can pass a single string for a user message, or a list of input items.

required
context TContext | None

The context to run the agent with.

None
max_turns int

The maximum number of turns to run the agent for. A turn is defined as one AI invocation (including any tool calls that might occur).

DEFAULT_MAX_TURNS
hooks RunHooks[TContext] | None

An object that receives callbacks on various lifecycle events.

None
run_config RunConfig | None

Global settings for the entire agent run.

None

Returns:

Type Description
RunResultStreaming

A result object that contains data about the run, as well as a method to stream events.

Source code in src/agents/run.py
@classmethod
def run_streamed(
    cls,
    starting_agent: Agent[TContext],
    input: str | list[TResponseInputItem],
    context: TContext | None = None,
    max_turns: int = DEFAULT_MAX_TURNS,
    hooks: RunHooks[TContext] | None = None,
    run_config: RunConfig | None = None,
) -> RunResultStreaming:
    """Run a workflow starting at the given agent in streaming mode. The returned result object
    contains a method you can use to stream semantic events as they are generated.

    The agent will run in a loop until a final output is generated. The loop runs like so:
    1. The agent is invoked with the given input.
    2. If there is a final output (i.e. the agent produces something of type
        `agent.output_type`, the loop terminates.
    3. If there's a handoff, we run the loop again, with the new agent.
    4. Else, we run tool calls (if any), and re-run the loop.

    In two cases, the agent may raise an exception:
    1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised.
    2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised.

    Note that only the first agent's input guardrails are run.

    Args:
        starting_agent: The starting agent to run.
        input: The initial input to the agent. You can pass a single string for a user message,
            or a list of input items.
        context: The context to run the agent with.
        max_turns: The maximum number of turns to run the agent for. A turn is defined as one
            AI invocation (including any tool calls that might occur).
        hooks: An object that receives callbacks on various lifecycle events.
        run_config: Global settings for the entire agent run.

    Returns:
        A result object that contains data about the run, as well as a method to stream events.
    """
    if hooks is None:
        hooks = RunHooks[Any]()
    if run_config is None:
        run_config = RunConfig()

    # If there's already a trace, we don't create a new one. In addition, we can't end the
    # trace here, because the actual work is done in `stream_events` and this method ends
    # before that.
    new_trace = (
        None
        if get_current_trace()
        else trace(
            workflow_name=run_config.workflow_name,
            trace_id=run_config.trace_id,
            group_id=run_config.group_id,
            metadata=run_config.trace_metadata,
            disabled=run_config.tracing_disabled,
        )
    )
    # Need to start the trace here, because the current trace contextvar is captured at
    # asyncio.create_task time
    if new_trace:
        new_trace.start(mark_as_current=True)

    output_schema = cls._get_output_schema(starting_agent)
    context_wrapper: RunContextWrapper[TContext] = RunContextWrapper(
        context=context  # type: ignore
    )

    streamed_result = RunResultStreaming(
        input=copy.deepcopy(input),
        new_items=[],
        current_agent=starting_agent,
        raw_responses=[],
        final_output=None,
        is_complete=False,
        current_turn=0,
        max_turns=max_turns,
        input_guardrail_results=[],
        output_guardrail_results=[],
        _current_agent_output_schema=output_schema,
        _trace=new_trace,
    )

    # Kick off the actual agent loop in the background and return the streamed result object.
    streamed_result._run_impl_task = asyncio.create_task(
        cls._run_streamed_impl(
            starting_input=input,
            streamed_result=streamed_result,
            starting_agent=starting_agent,
            max_turns=max_turns,
            hooks=hooks,
            context_wrapper=context_wrapper,
            run_config=run_config,
        )
    )
    return streamed_result

RunConfig dataclass

Configures settings for the entire agent run.

Source code in src/agents/run.py
@dataclass
class RunConfig:
    """Configures settings for the entire agent run."""

    model: str | Model | None = None
    """The model to use for the entire agent run. If set, will override the model set on every
    agent. The model_provider passed in below must be able to resolve this model name.
    """

    model_provider: ModelProvider = field(default_factory=OpenAIProvider)
    """The model provider to use when looking up string model names. Defaults to OpenAI."""

    model_settings: ModelSettings | None = None
    """Configure global model settings. Any non-null values will override the agent-specific model
    settings.
    """

    handoff_input_filter: HandoffInputFilter | None = None
    """A global input filter to apply to all handoffs. If `Handoff.input_filter` is set, then that
    will take precedence. The input filter allows you to edit the inputs that are sent to the new
    agent. See the documentation in `Handoff.input_filter` for more details.
    """

    input_guardrails: list[InputGuardrail[Any]] | None = None
    """A list of input guardrails to run on the initial run input."""

    output_guardrails: list[OutputGuardrail[Any]] | None = None
    """A list of output guardrails to run on the final output of the run."""

    tracing_disabled: bool = False
    """Whether tracing is disabled for the agent run. If disabled, we will not trace the agent run.
    """

    trace_include_sensitive_data: bool = True
    """Whether we include potentially sensitive data (for example: inputs/outputs of tool calls or
    LLM generations) in traces. If False, we'll still create spans for these events, but the
    sensitive data will not be included.
    """

    workflow_name: str = "Agent workflow"
    """The name of the run, used for tracing. Should be a logical name for the run, like
    "Code generation workflow" or "Customer support agent".
    """

    trace_id: str | None = None
    """A custom trace ID to use for tracing. If not provided, we will generate a new trace ID."""

    group_id: str | None = None
    """
    A grouping identifier to use for tracing, to link multiple traces from the same conversation
    or process. For example, you might use a chat thread ID.
    """

    trace_metadata: dict[str, Any] | None = None
    """
    An optional dictionary of additional metadata to include with the trace.
    """

model class-attribute instance-attribute

model: str | Model | None = None

The model to use for the entire agent run. If set, will override the model set on every agent. The model_provider passed in below must be able to resolve this model name.

model_provider class-attribute instance-attribute

model_provider: ModelProvider = field(
    default_factory=OpenAIProvider
)

The model provider to use when looking up string model names. Defaults to OpenAI.

model_settings class-attribute instance-attribute

model_settings: ModelSettings | None = None

Configure global model settings. Any non-null values will override the agent-specific model settings.

handoff_input_filter class-attribute instance-attribute

handoff_input_filter: HandoffInputFilter | None = None

A global input filter to apply to all handoffs. If Handoff.input_filter is set, then that will take precedence. The input filter allows you to edit the inputs that are sent to the new agent. See the documentation in Handoff.input_filter for more details.

input_guardrails class-attribute instance-attribute

input_guardrails: list[InputGuardrail[Any]] | None = None

A list of input guardrails to run on the initial run input.

output_guardrails class-attribute instance-attribute

output_guardrails: list[OutputGuardrail[Any]] | None = None

A list of output guardrails to run on the final output of the run.

tracing_disabled class-attribute instance-attribute

tracing_disabled: bool = False

Whether tracing is disabled for the agent run. If disabled, we will not trace the agent run.

trace_include_sensitive_data class-attribute instance-attribute

trace_include_sensitive_data: bool = True

Whether we include potentially sensitive data (for example: inputs/outputs of tool calls or LLM generations) in traces. If False, we'll still create spans for these events, but the sensitive data will not be included.

workflow_name class-attribute instance-attribute

workflow_name: str = 'Agent workflow'

The name of the run, used for tracing. Should be a logical name for the run, like "Code generation workflow" or "Customer support agent".

trace_id class-attribute instance-attribute

trace_id: str | None = None

A custom trace ID to use for tracing. If not provided, we will generate a new trace ID.

group_id class-attribute instance-attribute

group_id: str | None = None

A grouping identifier to use for tracing, to link multiple traces from the same conversation or process. For example, you might use a chat thread ID.

trace_metadata class-attribute instance-attribute

trace_metadata: dict[str, Any] | None = None

An optional dictionary of additional metadata to include with the trace.