Skip to content

Guardrails

GuardrailFunctionOutput dataclass

The output of a guardrail function.

Source code in src/agents/guardrail.py
@dataclass
class GuardrailFunctionOutput:
    """The output of a guardrail function."""

    output_info: Any
    """
    Optional information about the guardrail's output. For example, the guardrail could include
    information about the checks it performed and granular results.
    """

    tripwire_triggered: bool
    """
    Whether the tripwire was triggered. If triggered, the agent's execution will be halted.
    """

output_info instance-attribute

output_info: Any

Optional information about the guardrail's output. For example, the guardrail could include information about the checks it performed and granular results.

tripwire_triggered instance-attribute

tripwire_triggered: bool

Whether the tripwire was triggered. If triggered, the agent's execution will be halted.

InputGuardrailResult dataclass

The result of a guardrail run.

Source code in src/agents/guardrail.py
@dataclass
class InputGuardrailResult:
    """The result of a guardrail run."""

    guardrail: InputGuardrail[Any]
    """
    The guardrail that was run.
    """

    output: GuardrailFunctionOutput
    """The output of the guardrail function."""

guardrail instance-attribute

guardrail: InputGuardrail[Any]

The guardrail that was run.

output instance-attribute

The output of the guardrail function.

OutputGuardrailResult dataclass

The result of a guardrail run.

Source code in src/agents/guardrail.py
@dataclass
class OutputGuardrailResult:
    """The result of a guardrail run."""

    guardrail: OutputGuardrail[Any]
    """
    The guardrail that was run.
    """

    agent_output: Any
    """
    The output of the agent that was checked by the guardrail.
    """

    agent: Agent[Any]
    """
    The agent that was checked by the guardrail.
    """

    output: GuardrailFunctionOutput
    """The output of the guardrail function."""

guardrail instance-attribute

guardrail: OutputGuardrail[Any]

The guardrail that was run.

agent_output instance-attribute

agent_output: Any

The output of the agent that was checked by the guardrail.

agent instance-attribute

agent: Agent[Any]

The agent that was checked by the guardrail.

output instance-attribute

The output of the guardrail function.

InputGuardrail dataclass

Bases: Generic[TContext]

Input guardrails are checks that run in parallel to the agent's execution. They can be used to do things like: - Check if input messages are off-topic - Take over control of the agent's execution if an unexpected input is detected

You can use the @input_guardrail() decorator to turn a function into an InputGuardrail, or create an InputGuardrail manually.

Guardrails return a GuardrailResult. If result.tripwire_triggered is True, the agent execution will immediately stop and a InputGuardrailTripwireTriggered exception will be raised

Source code in src/agents/guardrail.py
@dataclass
class InputGuardrail(Generic[TContext]):
    """Input guardrails are checks that run in parallel to the agent's execution.
    They can be used to do things like:
    - Check if input messages are off-topic
    - Take over control of the agent's execution if an unexpected input is detected

    You can use the `@input_guardrail()` decorator to turn a function into an `InputGuardrail`, or
    create an `InputGuardrail` manually.

    Guardrails return a `GuardrailResult`. If `result.tripwire_triggered` is `True`, the agent
    execution will immediately stop and a `InputGuardrailTripwireTriggered` exception will be raised
    """

    guardrail_function: Callable[
        [RunContextWrapper[TContext], Agent[Any], str | list[TResponseInputItem]],
        MaybeAwaitable[GuardrailFunctionOutput],
    ]
    """A function that receives the agent input and the context, and returns a
     `GuardrailResult`. The result marks whether the tripwire was triggered, and can optionally
     include information about the guardrail's output.
    """

    name: str | None = None
    """The name of the guardrail, used for tracing. If not provided, we'll use the guardrail
    function's name.
    """

    def get_name(self) -> str:
        if self.name:
            return self.name

        return self.guardrail_function.__name__

    async def run(
        self,
        agent: Agent[Any],
        input: str | list[TResponseInputItem],
        context: RunContextWrapper[TContext],
    ) -> InputGuardrailResult:
        if not callable(self.guardrail_function):
            raise UserError(f"Guardrail function must be callable, got {self.guardrail_function}")

        output = self.guardrail_function(context, agent, input)
        if inspect.isawaitable(output):
            return InputGuardrailResult(
                guardrail=self,
                output=await output,
            )

        return InputGuardrailResult(
            guardrail=self,
            output=output,
        )

guardrail_function instance-attribute

guardrail_function: Callable[
    [
        RunContextWrapper[TContext],
        Agent[Any],
        str | list[TResponseInputItem],
    ],
    MaybeAwaitable[GuardrailFunctionOutput],
]

A function that receives the agent input and the context, and returns a GuardrailResult. The result marks whether the tripwire was triggered, and can optionally include information about the guardrail's output.

name class-attribute instance-attribute

name: str | None = None

The name of the guardrail, used for tracing. If not provided, we'll use the guardrail function's name.

OutputGuardrail dataclass

Bases: Generic[TContext]

Output guardrails are checks that run on the final output of an agent. They can be used to do check if the output passes certain validation criteria

You can use the @output_guardrail() decorator to turn a function into an OutputGuardrail, or create an OutputGuardrail manually.

Guardrails return a GuardrailResult. If result.tripwire_triggered is True, a OutputGuardrailTripwireTriggered exception will be raised.

Source code in src/agents/guardrail.py
@dataclass
class OutputGuardrail(Generic[TContext]):
    """Output guardrails are checks that run on the final output of an agent.
    They can be used to do check if the output passes certain validation criteria

    You can use the `@output_guardrail()` decorator to turn a function into an `OutputGuardrail`,
    or create an `OutputGuardrail` manually.

    Guardrails return a `GuardrailResult`. If `result.tripwire_triggered` is `True`, a
    `OutputGuardrailTripwireTriggered` exception will be raised.
    """

    guardrail_function: Callable[
        [RunContextWrapper[TContext], Agent[Any], Any],
        MaybeAwaitable[GuardrailFunctionOutput],
    ]
    """A function that receives the final agent, its output, and the context, and returns a
     `GuardrailResult`. The result marks whether the tripwire was triggered, and can optionally
     include information about the guardrail's output.
    """

    name: str | None = None
    """The name of the guardrail, used for tracing. If not provided, we'll use the guardrail
    function's name.
    """

    def get_name(self) -> str:
        if self.name:
            return self.name

        return self.guardrail_function.__name__

    async def run(
        self, context: RunContextWrapper[TContext], agent: Agent[Any], agent_output: Any
    ) -> OutputGuardrailResult:
        if not callable(self.guardrail_function):
            raise UserError(f"Guardrail function must be callable, got {self.guardrail_function}")

        output = self.guardrail_function(context, agent, agent_output)
        if inspect.isawaitable(output):
            return OutputGuardrailResult(
                guardrail=self,
                agent=agent,
                agent_output=agent_output,
                output=await output,
            )

        return OutputGuardrailResult(
            guardrail=self,
            agent=agent,
            agent_output=agent_output,
            output=output,
        )

guardrail_function instance-attribute

guardrail_function: Callable[
    [RunContextWrapper[TContext], Agent[Any], Any],
    MaybeAwaitable[GuardrailFunctionOutput],
]

A function that receives the final agent, its output, and the context, and returns a GuardrailResult. The result marks whether the tripwire was triggered, and can optionally include information about the guardrail's output.

name class-attribute instance-attribute

name: str | None = None

The name of the guardrail, used for tracing. If not provided, we'll use the guardrail function's name.

input_guardrail

input_guardrail(
    func: _InputGuardrailFuncSync[TContext_co],
) -> InputGuardrail[TContext_co]
input_guardrail(
    func: _InputGuardrailFuncAsync[TContext_co],
) -> InputGuardrail[TContext_co]
input_guardrail(
    *, name: str | None = None
) -> Callable[
    [
        _InputGuardrailFuncSync[TContext_co]
        | _InputGuardrailFuncAsync[TContext_co]
    ],
    InputGuardrail[TContext_co],
]
input_guardrail(
    func: _InputGuardrailFuncSync[TContext_co]
    | _InputGuardrailFuncAsync[TContext_co]
    | None = None,
    *,
    name: str | None = None,
) -> (
    InputGuardrail[TContext_co]
    | Callable[
        [
            _InputGuardrailFuncSync[TContext_co]
            | _InputGuardrailFuncAsync[TContext_co]
        ],
        InputGuardrail[TContext_co],
    ]
)

Decorator that transforms a sync or async function into an InputGuardrail. It can be used directly (no parentheses) or with keyword args, e.g.:

@input_guardrail
def my_sync_guardrail(...): ...

@input_guardrail(name="guardrail_name")
async def my_async_guardrail(...): ...
Source code in src/agents/guardrail.py
def input_guardrail(
    func: _InputGuardrailFuncSync[TContext_co]
    | _InputGuardrailFuncAsync[TContext_co]
    | None = None,
    *,
    name: str | None = None,
) -> (
    InputGuardrail[TContext_co]
    | Callable[
        [_InputGuardrailFuncSync[TContext_co] | _InputGuardrailFuncAsync[TContext_co]],
        InputGuardrail[TContext_co],
    ]
):
    """
    Decorator that transforms a sync or async function into an `InputGuardrail`.
    It can be used directly (no parentheses) or with keyword args, e.g.:

        @input_guardrail
        def my_sync_guardrail(...): ...

        @input_guardrail(name="guardrail_name")
        async def my_async_guardrail(...): ...
    """

    def decorator(
        f: _InputGuardrailFuncSync[TContext_co] | _InputGuardrailFuncAsync[TContext_co],
    ) -> InputGuardrail[TContext_co]:
        return InputGuardrail(guardrail_function=f, name=name)

    if func is not None:
        # Decorator was used without parentheses
        return decorator(func)

    # Decorator used with keyword arguments
    return decorator

output_guardrail

output_guardrail(
    func: _OutputGuardrailFuncSync[TContext_co],
) -> OutputGuardrail[TContext_co]
output_guardrail(
    func: _OutputGuardrailFuncAsync[TContext_co],
) -> OutputGuardrail[TContext_co]
output_guardrail(
    *, name: str | None = None
) -> Callable[
    [
        _OutputGuardrailFuncSync[TContext_co]
        | _OutputGuardrailFuncAsync[TContext_co]
    ],
    OutputGuardrail[TContext_co],
]
output_guardrail(
    func: _OutputGuardrailFuncSync[TContext_co]
    | _OutputGuardrailFuncAsync[TContext_co]
    | None = None,
    *,
    name: str | None = None,
) -> (
    OutputGuardrail[TContext_co]
    | Callable[
        [
            _OutputGuardrailFuncSync[TContext_co]
            | _OutputGuardrailFuncAsync[TContext_co]
        ],
        OutputGuardrail[TContext_co],
    ]
)

Decorator that transforms a sync or async function into an OutputGuardrail. It can be used directly (no parentheses) or with keyword args, e.g.:

@output_guardrail
def my_sync_guardrail(...): ...

@output_guardrail(name="guardrail_name")
async def my_async_guardrail(...): ...
Source code in src/agents/guardrail.py
def output_guardrail(
    func: _OutputGuardrailFuncSync[TContext_co]
    | _OutputGuardrailFuncAsync[TContext_co]
    | None = None,
    *,
    name: str | None = None,
) -> (
    OutputGuardrail[TContext_co]
    | Callable[
        [_OutputGuardrailFuncSync[TContext_co] | _OutputGuardrailFuncAsync[TContext_co]],
        OutputGuardrail[TContext_co],
    ]
):
    """
    Decorator that transforms a sync or async function into an `OutputGuardrail`.
    It can be used directly (no parentheses) or with keyword args, e.g.:

        @output_guardrail
        def my_sync_guardrail(...): ...

        @output_guardrail(name="guardrail_name")
        async def my_async_guardrail(...): ...
    """

    def decorator(
        f: _OutputGuardrailFuncSync[TContext_co] | _OutputGuardrailFuncAsync[TContext_co],
    ) -> OutputGuardrail[TContext_co]:
        return OutputGuardrail(guardrail_function=f, name=name)

    if func is not None:
        # Decorator was used without parentheses
        return decorator(func)

    # Decorator used with keyword arguments
    return decorator